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Abstract—Connected, cooperative, and autonomous mobility
(CCAM) will take intelligent transportation to a new level
of complexity. CCAM systems can be thought of as complex
Systems-of-Systems (SoSs). They pose new challenges to security
as consequences of vulnerabilities or attacks become much harder
to assess. In this paper, we propose the use of a specific type of
a trust model, called subjective trust network, to model and
assess trustworthiness of data and nodes in an automotive SoS.
Given the complexity of the topic, we illustrate the application
of subjective trust networks on a specific example, namely
Cooperative Intersection Management (CIM). To this end, we
introduce the CIM use-case and show how it can be modelled as a
subjective trust network. We then analyze how such trust models
can be useful both for design time and run-time analysis, and how
they would allow us a more precise quantitative assessment of
trust in automotive SoS. Finally, we also discuss the open research
problems and practical challenges that need to be addressed
before such trust models can be applied in practice.

Index Terms—Automotive security, system-of-systems security,
automotive trust models

I. INTRODUCTION

The development of vehicles and their surrounding in-
frastructure leads to ever more complex systems. A recent
culmination of this trend are connected, cooperative, and
autonomous mobility (CCAM) systems that will enable ap-
plications like cooperative intersection management (CIM)
in which vehicles cooperate with Vehicular Edge Computing
devices to efficiently manage traffic at an intersection. Consid-
ering also the internal complexity of the vehicles themselves,
we end up with extremely complex systems-of-systems.

The aforementioned CIM and many other CCAM applica-
tions assume that the vehicles provide correct information and
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– where intended – follow the decisions of roadside infrastruc-
ture such as the multi-access edge computing (MEC) servers
co-located with roadside units (RSUs). This assumption may
not always be true due to various reasons [1]. For example, a
vehicle with a compromised communication unit could send
an incorrect position to the MEC server claiming that the
vehicle is entering the intersection from a different direction.
In the worst case, this could affect vehicles’ safety and lead to
accidents. This is why security mechanisms like misbehavior
detection [2] for connected vehicles and cooperative mobility
are important and have been under investigation for many
years.

However, the trend towards ever more complex automotive
SoS makes design and deployment of appropriate security
controls more and more challenging. Security engineering as
defined by standards like ISO/SAE 21434 and mandated by
UNECE R 155 regulation has become commonplace in the
automotive industry. However, such security engineering has
two drawbacks: First, its analysis often focuses only on single
vehicles or even only on sub-components, leaving the overall
CCAM SoS out of scope. Second, its approaches are limited in
their accuracy as they are not based on accurate mathematical
modeling of the systems and their inter-dependencies.

It might, for example, become very difficult to assess how a
vulnerability found in one particular Electronic Control Unit
(ECU) of a vehicle might affect security and thus safety of
the overall CIM application. For traditional risk assessment
conducted during a security engineering process, assessing
how a vulnerability transitively affects other components in
a complex system-of-systems is not well defined.

In this paper, we therefore propose a trust management
framework that allows to mathematically model the trust
relationships between components in an automotive system-
of-systems as a trust graph or trust network. Using this
framework, questions as the one described above could be
answered in a quantitative manner: how is, for example,
the trustworthiness of a cooperative intersection application



affected by a vulnerability in one of the participating vehicles?
Are the available information and the driving commands
derived thereupon in a CIM-managed intersection trustworthy
enough to continue operation? Or would one have to resort
to a fail-operational state where vehicles do not rely on the
cooperation with potentially untrustworthy vehicles? Our trust
management framework build on the formal logic framework
of Subjective Logic [3], which is a well-established formalism
to reason about trust in systems but has not yet been used to
model automotive CCAM SoS.

In the remainder of this paper, we first introduce an example
scenario by which we will:
1. illustrate an example scenario for CIM,
2. identify challenges and requirements for a trust model in
CIM and other CCAM systems,
2. review related work to identify candidates for the trust
model and related solutions,
3. introduce an approach to design a trust framework for our
CIM example, and
4. show how our trust framework can be used to evaluate
whether the complex CIM application is operating in a trust-
worthy state.

With the use-case driven approach taken here, we want to
demonstrate the feasibility of our trust framework and at the
same time identify the open challenges and research questions
that still need to be addressed in order to design and build a
generalisable framework.

II. COOPERATIVE INTERSECTION MANAGEMENT (CIM)

CIM is an approach that uses communication and coop-
eration between vehicles and infrastructure, or just between
vehicles, to decide when which vehicle should pass through the
intersection. In this way, safety and efficiency at intersections
can be improved.

Approaches for a CIM can be divided into a signalized
and a non-signalized CIM. In a signalized CIM, there are
traffic signals at the intersection, and traffic passes through
the intersection according to the traffic signals. This is not the
case in a non-signalized CIM where the traffic control must
be done by other means, such as by a central authority that
tells each vehicle when it can pass through the intersection.
CIM can be further categorized into centralized or distributed
CIM. Centralized CIM relies on a coordination unit, such as
a MEC server, that collects information from the vehicles and
tells the vehicles when and how they can pass through the
intersection. In distributed CIM, there is no such central entity.
Instead, vehicles communicate with each other and take their
decisions locally [1].

In this paper, we focus on non-signalized and centralized
CIM, which is a reasonably complex and representative ap-
plication for a CCAM scenario. We argue that other CIM
approaches or many CCAM applications are similar in na-
ture, system structure, and complexity and, thus, similar trust
models can be used there as well.

There are several approaches to implement a non-signalized
and centralized CIM. A common approach is that each vehicle
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Fig. 1. Visualization of the reservation of trajectories for the individual
vehicles (blue and orange areas)

driving towards the intersection reserves a trajectory for a
limited time window during which it passes the intersection
(see Figure 1). For this purpose, vehicles send several attributes
to the MEC server such as their turn direction, position, and
speed. Based on these attributes, the MEC server can calculate
when the vehicle will arrive at the intersection and which
trajectory it will use. The MEC server then reserves a time
window for the vehicle to pass the intersection and sends
it back to the corresponding vehicle [4]. The attributes that
are exchanged between the vehicles and the MEC server are
summarized in Figure 2.

VA VB

MEC S

tA

pA

tB

tA

pA - position of vehicle VA

- time-to-go of vehicle VA

sA tdA pB sB tdB

sA - speed of vehicle VA

tdA - turn direction of vehicle VA

Fig. 2. Overview of the information exchange between the vehicles and the
MEC server

III. REQUIREMENTS AND CHALLENGES FOR CCAM
TRUST MODELS

After introducing the CIM scenario, we can now specify the
requirements but also identify the challenges when trying to
derive a matching trust model that reflects all trust relation-
ships in the scenario.

One requirement is that the trust model should allow
transitive trust relationships. In a system-of-systems, transitive
information flows exist across multiple nodes. Each node
involved in the data flow has an impact on the trustworthiness
of the data, which is taken into account in the trust calculation
through transitive trust relationships.

Regarding trust calculation, the trust model should allow to
reflect trust in data and trust in nodes, since we are ultimately



interested in trust in data, but also need to consider trust in
nodes to transitively reflect trust of data relayed by nodes.

The trust reasoning mechanism should be probabilistic and
support the expression of uncertainty. Probabilistic reasoning
is important since trust in another entity is not binary, but
should reflect a continuum from not trusted to fully trusted. In
addition, the trust opinion should include uncertainty, since in
some cases a node may not have enough evidence to establish
reliably with what probability a node is trustworthy.

Furthermore, we need to represent subjective notions of
trust, as each vehicle will be presented with different evidence.
Therefore, it is important to express trust from the perspective
of and based on evidence that a single node has.

The entire process of calculating trust opinions should be
fast and efficient so that it can be used at run-time for real-time
applications even on resource-constraint devices. At the same
time, it can also be used during design time, for example, in
the context of risk management where the trust model could
be used to better quantify risks in a complex automotive SoS.

Finally, the trust model should be generic enough to be
applicable in different CCAM systems and not only in CIM
scenarios. An approach that meets all of these requirements is
described in this paper.

IV. RELATED WORK

Security issues in CCAM systems can result in safety
problems and is therefore of highest importance. As this was
evident even when starting to design vehicle-to-everything
(V2X) systems, security mechanisms have already been in-
vestigated and introduced from the start on. In this section,
we describe some of these works that are relevant also for
trust modeling.

A. Misbehavior Detection

Misbehavior detection (MBD) was originally developed in
the context of V2X communication and can be divided into
node-centric and data-centric misbehavior detection. Van der
Heijden et al. [2] provide an overview over the different
forms of MBD. They distinguish between node-centric misbe-
havior detection which examines the behavior of nodes, like
vehicles or RSUs, to detect misbehavior. In contrast, data-
centric misbehavior detection examines the information that
is communicated to detect misbehavior, regardless of who
transmitted the message. For example, Ruj et al. [5] detect
misbehaving nodes in that a vehicle, after receiving a message
from another vehicle, compares the position indicated in the
message with the estimated position of the sending vehicle.
Many authors propose combinations of both types leading to
trust-based approaches that use outputs of data-centric and
node-centric misbehavior detection mechanisms to form trust
opinions on other vehicles and the data they send.

B. Trust Management Frameworks

Garlichs et al. [6] have proposed a trust management
framework that is to be used in a vehicle platoon system.
Depending on how much a host vehicle trusts its predecessor

in the platoon, the host vehicle regulates its safety distance
to that vehicle. The trust value is derived by the host vehicle
comparing the actual behavior of the sender with the informa-
tion it has received from the sender over an extended period of
time. The calculated trust value is compared with predefined
values to decide which safety distance to use. While shown to
be effective and efficient, the mechanism is highly application
specific and provides a rather static trust model.

Another approach was proposed by Raya et al. [7]. Here, ve-
hicles detect the misbehavior of other vehicles through various
MBD mechanisms and based on this, exchange accusations
about potentially malicious vehicles. If the sum of weighted
accusations against a vehicle exceeds a certain threshold, the
trust of the corresponding vehicle is too low so that it is
temporarily removed from the network.

In some related work, more advanced forms of decision
logic are used, such as in Raya et al. [8]. Here, several node-
centric and data-centric attributes are used to calculate the
trust value of a node. Based on this value, it is decided
whether the respective node should be trusted or not. For this
purpose, several decision logics were tried out and compared,
such as weighted voting and Bayesian inference. However, no
mechanism performed best in all simulated scenarios.

Dietzel et al. [9] and van der Heijden et al. [10] were the first
to propose the use of subjective logic to merge results from
different detection mechanisms in a misbehavior detection
system through the use of Subjective Logic. Their goal was
to integrate an arbitrary number of MBD mechanisms into
a single framework to enhance detection accuracy. Müller et
al. [11] have likewise used subjective logic to generate trust
opinions on nodes for MBD. Based on consistency checks
of the messages sent by the nodes, inconsistent messages are
detected, upon which the trust of the corresponding nodes is
adjusted. In this way, misbehaving nodes could efficiently be
detected and isolated.

Sohail et al. [12] use subjective logic to improve a distance
vector routing protocol used in V2X networks. Generated
trust opinions were included in the trust fields of the routing
table, making the protocol more robust against malicious
vehicles that could, for example, drop the messages. Müller
et al. [13] use subjective logic to determine the reliability of
data provided by road side units (RSUs) to vehicles.

Beyond the context of V2X networks, trust management
frameworks were also developed. For example, Kurdi et
al. [14] have proposed a trust management framework for
cloud service providers (CSPs) and Dimitrakos et al. [15] have
described a trust-based authorization approach for the Internet
of Things. Here, a trust value is calculated based on subjective
logic integrating several information sources. Based on this
trust value, it is decided whether an entity is authorized to
access resources or not.

The discussion in this section shows that the use of trust
management frameworks in the automotive domain is mostly
limited to misbehavior detection only. But as the last two
related works show, trust management can be considered for
much broader applications than just misbehavior detection.



Therefore, we go beyond misbehavior detection and suggest a
more general trust management framework for reasoning about
trust in complex system-of-systems in the automotive domain.

As subjective logic has proven to be highly useful for such a
task, we will likewise base our framework on subjective logic,
since it fulfills all the previously mentioned requirements.

V. TRUST MANAGEMENT FRAMEWORK

Our trust management framework means to model trust
relationships in cyber-physical systems like CCAM where
nodes exchange messages and information that affect the
behavior of other vehicles, thus, forming a cooperative system.
In such systems, nodes need to put some degree of reliance on
or trust in the correctness of received information, as incorrect
information could negatively affect their own behavior or also
information they send onward. To avoid blind trust, such
functional trust, i.e., trust in the correct execution of a specific
function or service between entities, should be established by
explicit mechanisms. Representing the structure of such trust
relationships and quantifying its degree by collecting evidence
is the purpose of the trust management framework.

For example, in our Cooperative Intersection Management
use-case, vehicles would send Cooperative Awareness Mes-
sages (CAM)1 to other vehicles and MEC servers informing
them about their mutual position, speed, and turn direction.
Once the receiving vehicle process the CAM and detect risks
for collisions in the intersection, they may decide to reduce
their speed or stop before entering the intersection to avoid
potential accidents. Likewise, the MEC server will base its
decision of intersection time slot allocation for each vehicle
on such information. Therefore, the messages sent by vehicles
or the MEC server will clearly affect the behavior of the
other vehicles, rendering message integrity and correctness of
contained information a highly important aspect in CCAM.
Therefore, it is crucial to establish a way to continuously
evaluate whether any node in a CCAM system can trust the
data it received and the nodes it received the data from.

To this end, the trust management framework presented here
will enable every node in the CCAM system to decide whether
nodes and/or their data can be trusted. Our trust management
framework is based on the concepts of subjective logic and
will allow each node X (trustor) to form a subjective opinion,
ωX
y = (bXy , dXy , uX

y ), on the trustworthiness of the data y sent
by node Y (trustee). Here, bXy is the belief that X has in y,
dXy is the disbelief that X has in y, and, finally, uX

y is the
amount of uncertainty X has w.r.t. the trustworthiness of y.
Like this data-centric trust, our framework also supports node-
centric trust opinions ωX

Y that express the functional trust that
X has in Y to provide correct service, e.g., to produce and
send correct data. When X uses some data in its actual driving
functions, we call ωX

y the actual trust level (ATL).
Our framework follows a zero-trust principle, meaning that

a trustor X initially has a zero belief (bXy = 0) and an
uncertainty of 1 (uX

y = 1) towards data y or trustees Y . Once

1in IEEE 1609, this corresponds to a Basic Safety Message (BSM)

more evidence is collected about the trustworthiness of y or
Y , for example through misbehavior detection mechanisms,
the belief will be recalculated. The belief will also continue to
be updated on a regular basis as new information or evidence
arrives in the system.

For deciding whether a certain ATL is sufficiently high for
a certain CCAM function, the trustor node X will need to
compare the ATL of the data y to the required trust level
(RTL). The RTL is also an opinion, ωR

y = (bRy , d
R
y , u

R
y ),

but, unlike ATL, its values are typically established during
system design-time and reflect the degree of negative impact
that reliance on malicious input could have. The process of
building ATL and RTL is discussed in more detailed in the
following sections.

Comparing ATL and RTL opinions can be done based on
their projected probabilities as calculated using the following
equations [3]:

P j
i = bji + aji × uj

i (1)

where aji is the base rate of i, i.e., the prior probability in
absence of specific evidence. Then PX

y must exceed PR
y for

y to be considered trustworthy by node X:

PX
y > PR

y (2)

Arguably, comparing projected probabilities of the ATL
and the RTL is a simplistic approach to determine the
trustworthiness of a node. Further investigation into more
sophisticated comparisons will be done in future work that
could also involve a more refined consideration of the degrees
of uncertainty of the two opinions.

A. Actual Trust Level (ATL)

A node X in a CCAM system that wants to determine the
actual trust level (ATL) of data y sent from node Y has to
perform the following three steps (see also Figure 3):

1) Form an opinion of the node Y based on some Trustwor-
thiness Indicators (TI) for Y (ωX

Y ) - node-based trust.
2) Perform trust-discounting between the opinion it has on

the node Y (ωX
Y ) and the opinion that the node Y has

on its own data (ωY
y ) to obtain the opinion on the data

y it received (ωX
y ) - data-based trust.

3) Create additional opinions on data y based on own
assessments of the trustworthiness of y, then fuse all
these opinions with (ωX

y ).
For this, a node Y that sends data y to another node X

also has to include a trust opinion that it has formed on the
trustworthiness of its own data, ωY

y , in the same message.
To illustrate how this three-step process works, we will

use our example of Cooperative Intersection Management
(CIM). As shown in Figure 2, once vehicles VA and VB have
approached an intersection managed by a MEC S, they send
various attributes to the MEC. For the sake of simplicity of
this example, we focus only on position data pA and pB . The
vehicles include their own opinions on their position data,



Fig. 3. Forming of trust opinions

ωVA
pA

and ωVB
pB

respectively, to the MEC (see Figure 4). Such
opinions could be formed by A and B based on, for example,
the knowledge about GPS reception accuracy or other factors.

Once S receives the position data and the opinions, it first
computes the trust opinions, ωS

VA
and ωS

VB
, on the vehicles

VA and VB (node-based trust). It does this based on a set
of trustworthiness indicators (TIs). Trustworthiness indicators
serve to establish node-centric trust into another node. They
will either increase the belief, the disbelief or the uncertainty
of the opinion that the MEC has on a vehicle. For example, if
the remote vehicle has a valid certificate, this will increase trust
in it. If a TI like a certificate cannot be evaluated, uncertainty
will raise. And if the node has shown earlier misbehavior, node
reputation will decrease and disbelief will increase. Future
work needs to establish a more detailed understanding of trust
indicators for node-centric trust, but literature knows a vast
amount of mechanisms that this can be built on [2].

Fig. 4. Trust model applied to CIM

After the MEC S has calculated trust opinions on the
vehicles themselves, it proceeds to compute the opinions on
the position data pA and pB sent by the vehicles (data-based
trust). It does this through performing trust discounting
between: i) the opinion it formed on the vehicles ωS

VA
and

ωS
VB

, and ii) the opinions of the vehicles have on their own
position data ωVA

pA
and ωVB

pB
. This is calculated as follows [3]:

ω[S;VA]
pA

:=


b
[S;VA]
pA (x) = PS

VA
∗ bVA

pA
(x)

u
[S;VA]
pA = 1− PS

VA
∗
∑

x∈X bVA
pA

(x)

a
[S;VA]
pA (x) = aVA

pA
(x)

(3)

ω[S;VB ]
pB

:=


b
[S;VB ]
pB (x) = PS

VB
∗ bVB

pB
(x)

u
[S;VB ]
pB = 1− PS

VB
∗
∑

x∈X bVB
pB

(x)

a
[S;VB ]
pB (x) = aVB

pB
(x)

(4)

The MEC now has a single opinion on the position data that
it received from the vehicles and it could assign this value to
the ATL, calculate the projected probability, and compare it
with the projected probability of the pre-established RTL to
decide whether the position data is trustworthy. However, for
a more robust and a more accurate calculation of trustwor-
thiness, the MEC should collect additional opinions on the
position data from other sources and fuse all of these opinions
together. For example, the MEC can be equipped with camera-
based sensors that independently determine the positions of
each vehicle. The MEC can then calculate additional opinions
on the position data reported by the vehicles by comparing
them to the position data determined by the cameras. These
opinions would all be fused together to create one final set
of opinions on the position data pA and pB . We discuss this
in our CIM example from Figure 4 with concrete numerical
values for the opinions.

Here we look only at vehicle VA and MEC server S
exchanging data and trust opinions. We start by assuming
that the S has been observing vehicle VA for a while through
a reputation system. Such a reputation system can be based
on average data-centric trust in data sent by the transmitting
vehicle. Based on this reputation system for VA, S has
developed an opinion on the trustworthiness of the vehicle,
ωS
VA

= (0.9, 0.05, 0.05, 0.9). Such an opinion expresses a high
level of trust given that the belief value is 0.9 and it also
expresses a high certainty in this judgement as the uncertainty
is relatively low 0.05.

Moreover, the vehicle VA is absolutely convinced that its
position data is sound, so the opinion it has on its own data is
ωVA
pA

= (1.0, 0.0, 0.0, 0.5), which expresses complete trust as
the belief is equal to 1. In realistic settings, GPS and sensor
inaccuracies could be accounted for by putting less belief and
more uncertainty into this opinion.

Given that we now have both the MEC’s opinion on the
vehicle, ωS

VA
, as well as the opinion of the vehicle on its data,

ωVA
pA

, we can now use trust discounting as in Formula 3 to
calculate the first opinion which S has on the data it received,
resulting in ω

[S;VA]
pA = ω1

S
pA

= (0.95, 0, 0.05, 0.5).
Using a camera-based sensor that S is equipped with, S

compares the position data reported by the vehicle and the
position data produced by its camera to create a second opinion
on the data received, ω2

S
pA

= (0.75, 0.1, 0.16, 0.75) which
shows lower belief but also a higher degree of uncertainty.

Finally, S uses cumulative belief fusion [3, Definition 12.5]
to fuse the two opinions into a joint opinion:

ω1⋄2
pA

= ω1
S
pA

⊕
ω2

S
pA

(5)



Plugging the appropriate values into this equation, we
obtain ω1⋄2

pA
= (0.93, 0.03, 0.04, 0.56), as well as a projected

probability of pω1⋄2
pA

= 0.96, which represents our ATL. In
other words, our MEC server has established a very high
belief in the trustworthiness of the position it received from
VA. This was to be expected given that it had a high belief
into the trustworthiness of A, A had high trustworthiness into
its position measurement, and S also used another camera-
based sensor to provide additional position evidence. As
shown, this subjective logic trust network can integrate various
evidence sources in a complex trust network that can extend
significantly beyond this simple example.

However, the ATL on its own does not allow for a decision
to be made on whether the MEC server should use the position
data as reported by vehicle VA. For this, the ATL has to be
evaluated in the context of a specific application like CIM and
its trust requirements by being compared to an appropriate
RTL.

B. Required Trust Level (RTL)

Typically, the RTL is established during CCAM system
development and represents a fixed value expressing how
critical the trustworthiness of some data is in the context of
a specific driving function or application. In this section, we
provide an approach to defining the RTL during a CCAM sys-
tem development process. ISO/SAE 21434 defines a security-
specific development process that must be fulfilled by vehicle
manufacturers and suppliers. For this reason, it makes sense
to determine the RTL based on activities during this process.
In particular, we see three main activities as relevant: The
Threat Analysis and Risk Assessment (TARA), derivation of a
security concept and security mechanisms, and the verification
and validation. During TARA, the vehicle or its subsystems
(so-called Items, e.g., control units) are examined for potential
cyber-threats. The risk of identified threats is then assessed.
This usually takes into account the feasibility of an attack
and its impact on the system. Based on the TARA results,
requirements for a cybersecurity concept are derived. This
includes an implementation of security mechanisms (e.g.,
authentication of in-vehicle messages). In the subsequent ver-
ification and validation phase, implemented security solutions
are evaluated. This can be done, for example, by testing
the correct functionality of the security mechanisms or by
carrying out penetration tests to identify potential remaining
vulnerabilities.

In terms of the approach presented in this paper, these
activities can be used to determine a RTL for the vehicle,
individual vehicle components, but it could also be extended to
complex CCAM systems. The threats and their risks identified
during TARA have a significant influence on this value. For
example, if only a few non-critical threats are identified for
a control unit, the RTL may be low. If, on the other hand, a
large number of highly critical threats to this control unit are
identified, a high RTL is necessary. In this case, the security
concept or implemented security mechanisms can be used to
refine the RTL, since they lower the feasibility of an attack.

This would result in a lower RTL. Additional testing activities
can lower that value even further, since the resilience against
attacks is further evaluated in this case.

Thus, the question arises how these activities can be trans-
ferred into the subjective logic model in order to calculate the
RTL. In order to answer this question, we will only consider
the TARA in this paper as an example. The result of a TARA
usually consists of a number of threats to the vehicle and their
risk. The risk of the individual threats can in turn be deter-
mined based on certain factors, such as likelihood or attack
feasibility. In order to use such factors to determine opinions,
Jøsang proposes the use of qualitative tables. One example
is the comparison of likelihood levels and confidence levels
[3, p. 49]. A value within this table can be interpreted as an
opinion. This can be applied to the case of a TARA. An initial
approach that can be used to define the RTL would be the use
of the Cybersecurity Assurance Level (CAL), a classification
scheme defined in the ISO/SAE 21434 and which is used to
define the level of rigor required for a satisfactory development
of a component, from the cybersecurity perspective. For this,
a TARA shall be done and cybersecurity goals (CG) shall be
defined for the component(s) under analysis. The next step is
to specify a CAL for each selected CG. The TARA is used to
understand threats and their attack feasibility. As shown in the
Table I, we can combine the CAL with the attack feasibility
and determine an RTL.

TABLE I
USING CAL LEVELS OF THE ISO/SAE 21434 IN COMBINATION WITH THE

ATTACK FEASIBILITY OF TARA THREATS TO DETERMINE OPINIONS.

Attack Feasibility
Very Low Low Medium High

CAL1 1V 1L 1M 1H
CAL2 2V 2L 2M 2H
CAL3 3V 3L 3M 3H
CAL4 4V 4L 4M 4H

To compute an RTL for the vehicle’s position sensor
in the CIM example, we assume that a CAL3 resulted
from an executed TARA. To determine opinions for indi-
vidual threats, we use two attacks from the Automotive
Attack Database (AAD) [16] and its associated attack taxon-
omy [17]. The two attacks (AAD ID: ID2019 Regulus SSA1,
ID2018 Zeng MSA1) describe spoofing of GPS data and
position information about the vehicle. For each attack, a
Common Vulnerability Scoring System (CVSS) rating is avail-
able, together with a rating according to its sub-metric Ex-
ploitability. To rank the attacks in Table I for CAL3, we
use the Exploitability metric. For the first attack, there is an
Exploitability of 3.89, which is the highest possible value.
Thus, the table value 3H can be assigned to it. The second
attack consists of two attack steps, each with an Exploitability
of 0.9 and 2.8. For the example here, we take the mean value
of 1.85, which can be assigned to the table entry 3L. Using the
approach suggested by Jøsang [3], two opinions can be derived
from the table entries. For the first attack, the opinion is
ω1

VA
pA

= (0.73, 0, 0.27, 0.5). For the second attack, the opinion



ω2
VA
pA

= (0.23, 0.5, 0.27, 0.5). Applying the cumulative fusion
to the two opinions yields ω

VA(1⋄2)
pA = (0.55, 0.29, 0.15, 0.56)

and thus the projected probability ω
VA(1⋄2)
pA = 0.63.

VI. CONCLUSION & FUTURE WORK

In this paper, we introduce the concept of using subjective
logic and subjective trust networks to model trust relationships
in complex systems-of-systems for CCAM applications. We
illustrate how such a trust network can be built for our CCAM
use-case and how a comparison of an actual trust level (ATL)
with a required trust level (RTL) can help to take trust-related
decisions in CCAM systems. Furthermore, we discuss what
data sources can be used to establish both the ATL and the
RTL.

Many of our discussions introduce concepts and raise ques-
tions for future research. Among others, we are working on
designing trust networks for larger scenarios. We also plan to
investigate how trust networks scale and how attacks affect
the trust networks in different parts of the graph. Moreover,
we are linking trust models to different information sources
that provide us trust evidence. Among these are hardware
security mechanisms, misbehavior detection mechanisms, and
many more. The goal is to provide a highly accurate structural
model of trust interrelations but also to quantify the available
trust evidence in order to allow precise statements on trust-
worthiness. A challenge here is that all this evidence needs to
be represented in form of subjective logic opinions in order
to be incorporated. Such translations are dependent on the
semantics of the evidence and therefore need to be established
differently for different kinds of evidence. Currently, the RTL
is established in a rather static fashion at design time only.
We envision that a more dynamic RTL could be established
that also takes into consideration not only the static system
architecture but also the information about the current driving
situation and the safety margins that a vehicle can have in it.

In the long-term, our research could pave the way to a novel
approach how to assess and reason about a systems security
and trustworthiness, linking safety and security much closer
than it is done today. The trust management framework and the
methodology to design and apply trust models could also be
transferred to many other domains of cyber-physical systems
and the Internet-of-Things, like smart homes, industry 4.0, and
many more.
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