
ZEKRA: Zero-Knowledge Control-Flow Attestation
Heini Bergsson Debes

Technical University of Denmark (DTU)

heib@dtu.dk

Edlira Dushku

Aalborg University

edu@es.aau.dk

Thanassis Giannetsos

Ubitech Ltd.

agiannetsos@ubitech.eu

Ali Marandi

Technical University of Denmark (DTU)

alimar@dtu.dk

ABSTRACT

To detect runtime attacks against programs running on a remote

computing platform, Control-Flow Attestation (CFA) lets a (trusted)

verifier determine the legality of the program’s execution path, as

recorded and reported by the remote platform (prover). However,

besides complicating scalability due to verifier complexity, this as-

sumption regarding the verifier’s trustworthiness renders existing

CFA schemes prone to privacy breaches and implementation dis-

closure attacks under “honest-but-curious” adversaries. Thus, to

suppress sensitive details from the verifier, we propose to have the

prover outsource the verification of the attested execution path to

an intermediate worker of which the verifier only learns the result.

However, since a worker might be dishonest about the outcome of

the verification, we propose a purely cryptographical solution of

transforming the verification of the attested execution path into

a verifiable computational task that can be reliably outsourced to

a worker without relying on any trusted execution environment.

Specifically, we propose to express a program-agnostic execution

path verification task inside an arithmetic circuit whose correct

execution can be verified by untrusted verifiers in zero knowledge.

CCS CONCEPTS

• Security andprivacy→ Security protocols;Privacy-preserving

protocols; Software security engineering.

KEYWORDS

Control-Flow Attestation; Verifiable Computation; zkSNARK

ACM Reference Format:

Heini BergssonDebes, Edlira Dushku, Thanassis Giannetsos, andAliMarandi.

2023. ZEKRA: Zero-Knowledge Control-Flow Attestation. In ACM ASIA
Conference on Computer and Communications Security (ASIA CCS ’23), July
10–14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3579856.3582833

1 INTRODUCTION

To safeguard the increasing computing system attack landscape,

traditional remote attestation schemes let a (trusted) verifier reason

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0098-9/23/07. . . $15.00

https://doi.org/10.1145/3579856.3582833

about the state of a remote prover’s computing platform. The secu-

rity of such schemes generally relies on a trust anchor on the prover,

capable of securely recording and authenticating platform evidence.

Building on this concept, Control-Flow Attestation (CFA) aims to

determine whether a programwas executed correctly on a resource-

constrained prover by verifying that no runtime attacks (e.g., ROP

[47]) subverted the program’s control-flow behavior. To ensure that

a program was executed correctly, existing CFA schemes assume a

trusted verifier who maintains complete reference materials, such

as the program’s Control-Flow Graph (CFG) and in-memory pro-

gram layout, and other acceptance criteria to decide on the legality

of the attested program’s execution path, as recorded and reported

by the prover’s trust anchor. However, besides impairing scalability

due to the verifier complexity, the unattractive need to exchange

comprehensive prover information discourages the adoption of

CFA in public-facing and emerging multi-domain services [4].

While not yet demonstrated for CFA, the concept of Property-

Based Attestation (PBA) [13] could reduce the verifier complexity

and prevent information disclosure by giving the verifier only the

verification result in the form of some semantical property. How-

ever, performing the necessary verification and property translation

locally on the prover would require a resourceful trust anchor ca-

pable of correctly maintaining all trusted reference materials and
performing the verification correctly, which is sometimes impractical,

especially for resource-constrained settings such as those generally

considered in CFA. Here, the provers are severely underpowered de-

vices equipped with carefully designed minimalistic trust anchors

[15] whose sole purpose is to record and authenticate a program’s

execution path during attestation. Therefore, without complicating

the prover, another option is to introduce an intermediate, more

powerful party, which we refer to as a worker (sometimes called

an “attestation proxy”), responsible for performing the attestation

verification on behalf of the verifier and conveying only the result

back to the verifier. However, to convince the verifier that the veri-

fication was done correctly, we would again generally encounter

heavy assumptions, such as requiring trusted hardware or a Trusted

Execution Environment (TEE) with attestable execution (e.g., Intel

SGX) to protect the verification process on the worker.

Instead, we propose to utilize Verifiable Computation (VC) to

transform the task of verifying the prover’s attested program execu-

tion into an outsourceable arithmetic circuit whose proof of correct
execution can be generated by the worker and efficiently verified by

the verifier, proving the attestation verification’s correctness and

outcome. Using VC, we need no assumption of any trusted computing
base on the worker while also protecting against a wider range of
attackers than approaches that consider some form of TEE. Further,

https://doi.org/10.1145/3579856.3582833
https://doi.org/10.1145/3579856.3582833

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia H. B. Debes et al.

to hide certain inputs of the proof generation (e.g., the attested

execution path and program details) from completely untrusted veri-

fiers, we use a privacy-enhanced VC scheme called zero-knowledge

Succinct Non-interactive Arguments of Knowledge (zkSNARK).

Contributions.Wepropose a novel protocol calledZEro-Knowledge
contRol-flow Attestation (ZEKRA), which is, to our knowledge, the

first privacy-preserving CFA protocol. Without imposing additional

prover assumptions, we remove all trust and complexity assump-

tions regarding verifiers by outsourcing attestation verifications to

intermediate workers who employ VC to convince verifiers about

the verification results. Our work offers the following contributions:

(i) We present a novel scheme that lets underpowered provers con-

vince untrusted verifiers about a program’s correct execution in

zero-knowledge by offloading the verification to an intermediate

worker that assures verifiers about the result without disclosing any

secrets using zkSNARK technology; (ii) We detail our outsourceable

circuit design, including the use of several circuit optimization tech-

niques; (iii) Realistic case studies, showing how ZEKRA can resolve

privacy issues in privacy-sensitive (non-time-critical) application

domains; and, (iv) We validate and benchmark ZEKRA with a proof-

of-concept implementation, which we make publicly available [14]

to ensure reproducibility and encourage further work.

2 RELATEDWORKS

Many prevention methods exist against program runtime attacks,

e.g., shadow stacks and stack canaries, Control-Pointer Integrity

(CPI), and Control-Flow Integrity (CFI) [1]. However, these methods

fail to provide any assurance to a remote entity since all enforce-

ment happens locally and will (depending on the enforced policy)

abruptly stop–and possibly crash–a device upon violations, which

can be dangerous in certain safety-critical applications.

Runtime attestation. To detect program control-flow attacks, C-

FLAT [2] proposed instrumenting the program to self-report all

control-flow events to a TEE during runtime, where, once hashed,

trusted verifiers can check if the digest exists in a set of trusted

reference values. LO-FAT [15] leverages a customized hardware

module to intercept the executed instructions at runtime to improve

C-FLAT’s performance. ATRIUM [53] enhances both C-FLAT and

LO-FAT to detect TOCTOU attacks that swap malign program seg-

ments with benign segments during attestation to evade detection.

ATRIUM relies on a customized hardware module that runs attesta-

tion parallel to the main processor. ScaRR [50] aims to apply CFA

to complex systems, e.g., cloud-native virtual machines. To deal

with the challenge of representing all the valid execution paths in

complex systems, ScaRR follows C-FLAT’s approach of splitting the

control-flow execution into sub-paths, where the idea is basically

to record each unique loop path only once in the execution path

while maintaining associated counters to track the number of times

each path was taken. Tiny-CFA [41] is a CFA protocol that relies on

the APEX Proof-of-Execution (PoX) architecture [40] and, similar

to C-FLAT, assumes that the software is instrumented. ReCFA [54]

performs control-flow attestation of complex software by relying

on the static binary analysis and binary instrumentation. In partic-

ular, the scheme compresses the control-flow evidence efficiently

and enforces control-flow integrity policy at the binary level with

a remote shadow stack. Note that other CFA schemes also exist,

which additionally consider: utilizing machine learning [28], a log-

based approach and use of physically unclonable functions [37],

distributed settings and use of multiset hash function to reduce the

size of the reported execution path [3]. Some approaches also con-

sider detecting data-oriented attacks [16, 34, 49] by verifying the

integrity of both control-flow and data involved in the execution.

Our work is complimentary to the above approaches: prior work
can leverage our scheme to weaken the verifier trust assumptions.

Specifically, whereas prior CFA works generally focus on recording

and reporting the program’s execution path, we focus on the layer

between provers and verifiers to remove the omniscient and trusted
verifier assumption by making the verification zero-knowledge.

Verifiable computation. Unlike CFA schemes that consider un-

derpowered provers and powerful verifiers, proof-based VC enables

weak verifiers (our provers) to outsource computationally intensive

computations to powerful yet untrusted provers (our workers) who

return proof that the computation was done correctly. Moreover,

to enable secret inputs in the computations, privacy-enhanced VC

schemes, e.g., zkSNARKs [23], guarantee that the proof reveals

nothing about the secret inputs. Furthermore, whereas proof gen-

eration is slow, verification is remarkably fast, making zkSNARKs

attractive, especially in Distributed Ledger Technology (DLT) [43].

To verify general programs using zkSNARKs, specialized com-

pilers, such as TinyRAM [5], vnTinyRAM [6], and Buffet [51] have

enabled the transformation of traditional programs into low-level

circuits, whose execution can be proven and verified securely. For

example, the TinyRAM [5] circuit compiler takes a high-level C

program and a time-bound 𝑇 as input and compiles the program to

special assembly instructions, whose emulated execution on some

input for up to𝑇 cycles in a general-purpose MIPS-like CPU, called

TinyRAM, is expressed as an arithmetic circuit that verifies the

correct execution of the input program. However, the principal

disadvantage is cost since the number of circuit constraints (i.e.,

the size of the circuit) grows unwieldy as the program complexity

increases, which strongly correlates to the amount of time it takes

to generate proof over the circuit’s execution. Improving on the

per-cycle cost, TinyRAM’s successor, vnTinyRAM [6], achieved

a quasi-constant per-cycle cost of ≈ 1, 458 constraints, and later

Buffet [51] further improved control flow and random memory

access by 1-3 and 1-2 orders of magnitude, respectively.

Nonetheless, directly expressing general programs as circuits

remains expensive. Fortunately, CFA schemes have demonstrated

that verifying a program’s execution is enough to convince a re-

mote verifier that a program executed correctly with respect to its

control flow. While CFA’s security guarantee is only a subset of

that of VC, this paper demonstrates that combining the two allows

underpowered provers to prove a program’s execution correctness.

3 BACKGROUND

3.1 Program Composition

A compiled program’s code can be represented by its Control-Flow

Graph (CFG), which encapsulates all possible program executions

by modeling the legal control flow between all of the program’s

statements. However, since not all statements affect the control

flow, we typically fractionate the statements into maximal-length

sequences of branchless statements that ultimately end in a branch,

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

if x == y
 then data = temperature()
 else data = humidity()
broadcast(data)
...
temperature:
 while i < z
 stmt
 return temperature
...
humidity: ...statements...
broadcast: ...statements...

1
2
3
4

5
6
7

8

1

9

2 3

4

5

6

X

attacker-injected codeX

9
10

Memory layout of program Program Control-Flow
Graph (CFG)

path with branch not-taken

path with branch taken

control-flow a�ack path

impure DOP vulnerability

control-flow vulnerability

pure DOP vulnerability
1

2

5

6

7

4

9

8

9

4

8

3

1

2

5

7

Figure 1: Abstract view of a program’s CFG and threats.

jump, or predicated operation. We denote each such sequence as a

basic block (BBL) and have the CFG model the control flow only

between program BBLs. Let 𝐺 = (𝑁, 𝐸) denote a directed graph

(CFG), where nodes 𝑛𝑖 ∈ 𝑁 correspond to BBLs and edges 𝑒 =

(𝑛𝑖 , 𝑛 𝑗) ∈ 𝐸 denote possible transfers of control. We refer to edges

corresponding to (direct and indirect) jumps and calls as forward

edges and returns as back edges. We further label any node 𝑛𝑖 an

entry node (𝑛▷) if it is unreachable (i.e., has indegree 𝛿
− (𝑛𝑖) of

zero) and a final node (𝑛◀) if it has no reachable nodes (i.e., has

outdegree 𝛿+ (𝑛𝑖) of zero). (We denote with Δ(𝐺) the maximum

outdegree of 𝐺 .) Finally, any continuous edge sequence is a legal

execution path if it connects some 𝑛▷ to 𝑛◀ (denoted 𝑛▷ ⇝ 𝑛◀).

3.2 Runtime Attacks

We continue with a description of major runtime attack classes that

can induce harmful behavior by exploiting software vulnerabili-

ties to corrupt a program’s control and data planes. As a running

example, let us consider the simple program skeleton in Fig. 1.

Control-based attacks. The most common attacks target a pro-

gram’s control plane to execute unintended code by explicitly di-

verting its execution path. There are essentially two variants: code

injection and code reuse. With code injection, an adversary crafts

and injects a payload into memory and redirects a benign program’s

control flow to execute the payload. As an example, consider that in

Fig. 1 an adversary has injected node 𝑛𝑋 and diverted the control-

flow from (𝑛3, 𝑛8) to (𝑛3, 𝑛𝑋), resulting in the execution of code in

𝑛𝑋 instead of 𝑛8. However, being an early attacking methodology,

code injection is easily defeated using commonmechanisms such as

Data-Execution Prevention (DEP). For the latter variant, however, it

gets more difficult. Without injecting code, code-reuse attacks reuse

existing program code to achieve some unintended behavior–using

control plane maneuvers such as Return-Oriented Programming

(ROP) [47] and Jump-Oriented Programming (JOP) [9].

With ROP/JOP, an adversary fabricates a new program by stitch-

ing together a chain of benign pieces of existing code (gadgets) that

end in function returns (ROP) or indirect jumps or function calls

(JOP). The chain is then written into memory (e.g., through a stack

overflow vulnerability), where, once it is triggered (e.g., by replac-

ing a function’s return address with that of the first gadget), the

gadgets execute in sequence. For example, in Fig. 1, the adversary

launches a ROP attack diverting the control-flow from (𝑛3, 𝑛8) to
(𝑛3, 𝑛2) to execute code in the other branch.

Non-control-data attacks. Another class of attacks exists, which

corrupt data variables to make programs yield unexpected outputs

or indirectly drive program execution down unexpected or unautho-

rized paths. The attacking methodology behind non-control-data

attacks is the application of Data-Oriented Programming (DOP)

[27] which we can call impure or pure, depending on whether the

program execution path is influenced (impure) or only data vari-

ables are altered with no effect on the path (pure). However, due to

the difficulty of effectively verifying a program’s data flow at the

verifier, CFA schemes generally disregard such attacks.

3.3 Toward CFA in Zero-Knowledge

Zero-knowledge proofs [21, 30, 38] enable a prover to convince a

verifier that a statement is true by demonstrating knowledge of a

satisfying witness without revealing anything about the witness.

Path explosion problem.Two fundamental zero-knowledge proof

system constructions are range proofs [31] and set membership

proofs [8], respectively.With range proofs, we can prove knowledge

of a secret 𝑠 by demonstrating that 𝑠 belongs to the interval [𝑢, 𝑣) for
arbitrary integers 𝑢 and 𝑣 . With set membership, we can prove that

𝑠 belongs to an arbitrary set 𝑆 . In both cases, however, we need a

clearly defined interval or set during the proof system instantiation.

Therefore, for us to use either approach on the worker to prove the

validity of an attested execution path, we would need to know all

legal execution paths, which is generally impractical.

For a directed acyclic graph (DAG), we could enumerate all paths

by performing a depth-first search. However, for a CFG, a directed

graph, the set of paths is unbounded, which we can illustrate by

considering the program in Fig. 1. For example, if the program loop

is only used as a busy-wait, the set of paths grows unwieldy since

any number of iterations constitutes a unique path. Moreover, as

the complexity of the program increases, so does the number of

paths. Therefore, we must sacrifice precision if we insist on a finite

set of paths. One approach is simply transforming the CFG into a

DAG by pruning all back edges. Similarly, as described in [26], we

can identify all strongly connected components, i.e., maximal sets of

nodes where a path exists between any two nodes in a set, contract

each component into a single node (e.g., fuse 𝑛5 and 𝑛6 in Fig. 1)

to form a condensation graph (which is acyclic), and then consider

only the paths within this graph. However, both approaches are

imperfect as the coarse-grained granularity of condensation or

ignorance when discarding back edges leaves attacks undetectable.

zkSNARKs. To let provers attest to arbitrary execution paths with-

out enumerating paths beforehand or sacrificing precision, we opt to

use zero-knowledge Succinct Non-interactive Arguments of Knowl-

edge (zkSNARK) [23, 43], where we create a program that accepts a

program’s CFG together with any path as input and verifies that the

path is legal according to the CFG. We then transform the program

into a low-level arithmetic circuit C representation [6] over a finite

field F (typically a 254-bit prime field F𝑝) composed of additions

and multiplications mod 𝑝 . Given such a circuit, we can instantiate

a zkSNARK proof system that lets provers attest to arbitrary execu-

tion paths, which can be proven correct by generating a proof 𝜋

that the circuit was satisfied when executed on the attested path.

Specifically, let C be our arithmetic circuit. A zkSNARK allows

the worker to prove that she correctly executed C on public input 𝑥

and secret input𝑢 (bar denotes secret input), as follows. After taking
C as input, a trusted party conducts a one-time setup that gives two

public keys: a proving key pk and a verification key vk. The proving
key pk enables any untrusted worker to produce a proof 𝜋 attesting

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia H. B. Debes et al.

to the fact that 𝑥 and 𝑢 satisfied C. The non-interactive proof 𝜋 is

zero knowledge and a proof of knowledge. The proof reveals nothing
about 𝑢, but anyone can verify its correctness using only vk.

In total, zkSNARK schemes consist of three algorithms:

• (pkC, vkC) ← KeyGen(C, 1_): given a circuit C, output pkC
and vkC as the public proving and verification keys.

• (𝑦, 𝜋) ← Prove(C, pkC, 𝑥,𝑢): given a circuit C, proving key
pkC, public 𝑥 and secret 𝑢 inputs, output 𝑦 ← C(𝑥,𝑢), and
the proof 𝜋 of the computation correctness.

• {0, 1} ← Verify(vkC, 𝑥,𝑦, 𝜋): given a verification key vkC
and statement (𝑥,𝑦), output 1 only if 𝑦 = C(𝑥,𝑢).

In most constructions, C is expressed in the NP-complete lan-

guages called Rank-1-Constraint-Systems (R1CS) and Quadratic

Arithmetic Programs (QAPs) [20]. In R1CS, computations are en-

coded as a set of conditions over its variables such that correct

execution equals finding a satisfying variable assignment, whereas,

with QAP, computations are instead represented as a set of qua-

dratic equations. However, as with any VC protocol that requires

the computation task to be expressed as arithmetic circuits over

some field F𝑝 , the size of the sets (i.e., constraints) corresponds to
the circuit size and determines the time needed to generate proofs.

4 SYSTEM AND THREAT MODEL

System model. We consider a network of four main entities:

(1) Prover is an untrusted and underpowered device equipped-

with a minimal trust anchor capable of tracing and authen-

ticating a program’s execution. Note that these two capa-

bilities constitute the minimum trusted computing base for

guaranteeing the security of the attestation and thus restrict

the trust anchor’s influence and performance footprint on

the prover as much as possible. See Appendix A for further

clarification on the underlying trust assumptions. However,

note that the choice of tracing via (i) interfacing with the

CPU’s pipeline [15, 16, 53], or (ii) having instrumented pro-

grams, stored in DEP-enabled memory, self-report control-

flow transfers [2, 3, 49, 50], is considered complementary.

(2) Verifier is an untrusted device wishing to check the correct-

ness of a program (or part thereof) executed on the prover.

(3) Worker is a semi-untrusted and computationally capable

device that generates zkSNARK proofs for convincing un-

trusted verifiers about the correctness of a prover’s attested

execution paths without disclosing any secret inputs. See

Appendix A for further clarification on the worker’s role.

(4) Network operator is trusted to execute the KeyGen algo-

rithm and equip protocol participants with necessary keys.

Note that while we consider the operator as a central trusted

entity who generates the cryptographic keys, in practice,

a secure multi-party sampling protocol would replace the

zkSNARK circuit’s trusted setup [10].

Adversarial model. We assume a strong software adversary, who,

on the prover, exploits a severe software vulnerability to mount

control-flow attacks to divert the attested program’s execution.

We then assume that the semi-dishonest worker is colluding with

the prover in an attempt to convince the verifier that the attested

program was executed correctly when in reality, it was not. Finally,

we consider an untrusted verifier that attempts to infer details

about the prover’s program (without colluding with the prover’s

or worker’s adversaries). Note, however, that if the verifier also

colludes, this is limited to violating the protocol’s privacy objective.

Objectives. Our protocol’s objectives are threefold: (i) verifiers

always reject a proof unless the prover executed the expected pro-

gram (or segment thereof) correctly and no control-flow attack was

present, (ii) any attempt by the worker to manipulate inputs during

proof generation results in a rejection, and (iii) verifiers neither

require nor learn any program details from the verification process.

5 THE ZEKRA PROTOCOL

CFG conformance. For the worker to convince an untrusted veri-

fier that an execution path EP is benign according to the reference

program’s CFG in zero-knowledge, she must prove the statement “I

have successfully verified that EP is a legal path in𝐶𝐹𝐺 , which be-

gan at node 𝑛▷ and ended at node 𝑛◀, where𝐶𝐹𝐺 is the preimage

of ℎ1”. To prove this statement, we embed it in a circuit C, which we
refer to as the ZEKRA circuit, where overlined variables denote

secret inputs to the circuit as described in Section 3.3, i.e., we have

the secret 𝑢 = {EP,𝐶𝐹𝐺} and public 𝑥 = {𝑛▷, 𝑛◀, ℎ1} inputs.
To allow verifiers to verify whether the correct program’s CFG

was considered for a given proof, we assume verifiers know the

digest of the program’s CFG as a reference value, ℎ1 = H(𝐶𝐹𝐺 | |𝑟_
1
),

where 𝑟1 is some sufficiently-long random padding (blinding factor)

added to the CFG preimage to protect against hammering and

linkage attacks and _ denotes the security parameter. (In our case,

we consider _ = 254, corresponding to a 254-bit prime field F𝑝 .)
Thus, given a valid proof 𝜋 over C and public inputs 𝑥 used in

the proof generation, verifiers can verify that the correct CFG was

considered by checking that the public input digest matches the

expected reference value. However, verifiers cannot infer anything

about the CFG preimage, which was supplied as a secret input.

Similarly, to let verifiers determine whether the secret execution

path supplied (attested) by the prover also connects the expected

CFG nodes, e.g., that it entered as expected at node 𝑛1 and exited

at node 𝑛9 in Fig. 1 (thus marking a successful execution), we grant

verifiers knowledge about the CFG’s contextually relevant entry

node 𝑛▷ and exit node 𝑛◀, respectively. These nodes are public

inputs to the ZEKRA circuit to let verifiers observe them and are

used internally to verify the start and end of the supplied execution

path. To simplify the discussion, we assume that each CFG has

a unique entry node, 𝑛▷, and a unique exit node, 𝑛◀. However,

the procedure is the same regardless of the considered granularity

(e.g., program level or function level), where a CFG might have

multiple legal entries or exit nodes. Note that since the interlinking

execution path 𝑛▷ ⇝ 𝑛◀ remains secret, the verifier cannot infer

anything about the execution path from observing the endpoints.

Furthermore, note that here 𝑛▷ and 𝑛◀ do not refer to the actual

memory addresses of the corresponding BBLs in the program CFG

but to numeric labels that have been assigned to the corresponding

nodes in the CFG. Specifically, because we must traverse the CFG in

the ZEKRA circuit, we must represent the CFG as a traversable data

structure, and using the nodes themselves to index the structure

allows for more optimized lookups. (We discuss how we represent

the CFG in Section 5.1.) However, since the prover will record and

attest to the raw execution path, which includes the actual memory

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

addresses, we assume a mappingM to help the ZEKRA circuit first

translate the recorded addresses into their corresponding numerical

label representation. The mapping is simply a list of the possible

memory addresses (i.e., nodes in the program CFG), where the index

of an address denotes its numeric label.
1
Then, similar to the CFG,

the circuit acceptsM as secret input and ℎ3 = H(M||𝑟_
3
) as public

input, where 𝑟3 is the random padding (blinding factor) added to

M’s preimage, which the verifier (who knows only H(M||𝑟_
3
) as a

reference value) can verify by observing the circuit’s public inputs.

Path authenticity. Note that anyone knowledgeable about the

program or its CFG can identify paths that will satisfy the ZEKRA

circuit. Thus, to convince verifiers that the secret execution path

for a particular proof was recorded on the prover and not produced

by someone else, we assume that each prover’s trusted tracer has a

certified asymmetric key pair {tpk, tsk}, where tpk denotes the pub-
lic key, and tsk denotes the secret key, respectively. It follows that

verifiers must know a prover’s public key to verify the authenticity

of attestation materials signed using that prover’s secret key.

One method of convincing the verifier about the path’s authen-

ticity is requiring a prover to sign the recorded execution path Sig
← Sign(H(EP), tsk), have the circuit accept Sig and H(EP) as se-
cret inputs and tpk as a public input, and then have the circuit use

tpk to verify internally that Sig is a valid signature overH(EP) and
H(EP) is the correct digest of EP. Then the verifier can verify that

the correct prover authenticated the execution path by checking if

the correct tpkwas supplied. However, the problem is that signature

verification is expensive in terms of circuit size since most algebraic

signature schemes are not compactly expressed over a field F𝑝 . For
example, expressing the RSA algorithm, which heavily relies on

modular exponentiation and long integer arithmetic, yields close

to 90K constraints [33], even considering a hardcoded modulus

and considerable optimizations. While there exist techniques to

reduce the complexity, e.g., by using a small public key exponent

[39], there are currently, to the best of our knowledge, no efficient

general-purpose signature schemes for circuits.

Another method is to have the prover prove possession of the

secret key behind its public key. For example, assuming that the

RSA cryptosystem is considered, we could include the substatement

“I know 𝑝 and 𝑞, where 𝑝 × 𝑞 = 𝑛” as part of the ZEKRA circuit’s

underpinning statement since knowledge of 𝑝 and 𝑞 for some public

key modulus 𝑛 proves possession of the secret key. However, this

would require the prover herself to generate the proof, which is

unsatisfactory, especially since CFA schemes generally consider

resource-constrained or heavily embedded devices and have the

prover only be concerned with tracing the program before outsourc-

ing the signed execution path to the verifier. Therefore, without

complicating the prover, we must design the ZEKRA circuit with

the intention of the proof generation being outsourced to workers.

For the third method of proving path authenticity, which we

opted for in our current version, signature verification is performed

outside the circuit, as inspired by [39]. The idea is for the circuit

to accept ℎ2 = H(EP||𝑛𝑐𝑒_ | |𝑟_
2
) as public input, where 𝑛𝑐𝑒_ is a

fresh nonce generated by the verifier to ensure freshness, and 𝑟_
2
is

1
Another benefit of keeping the CFG representation abstract inside the circuit is that

we are not limiting what is being mapped. For example, instead of mapping BBL

addresses, we could also include the hashes of the executed code as done in ATRIUM

[53]. We show how this extension has negligible performance impact in Section 7.2.

some random padding (blinding factor) generated and added to the

execution path by the prover. The nonce is given as public input

to the circuit to let verifiers ascertain freshness while the blinding

factor is kept secret. The circuit then verifies internally that the

secret execution path EP, padded with the nonce and blinding

factor, is indeed the correct preimage of ℎ2. As in the first method,

the prover also signs the recorded execution path Sig ← Sign(
H(EP||𝑛𝑐𝑒_ | |𝑟_

2
), tsk). The worker’s proof and prover’s signature

are then given to the verifier, who verifies that the public digest ℎ2
used in the proof generation matches the prover’s signed digest.

We give more details on the ZEKRA circuit in Section 6. Let us

first bring it all together and clarify the overall protocol.

The protocol. Fig. 2 shows a prover and a verifier engaging in the

protocol. To ensure freshness, the verifier challenges the prover

with a nonce 𝑛𝑐𝑒 and a reference@P to the program to be executed

and attested. In practice, the attested region is only a subset of the

entire program [3, 49], e.g., a security-critical function or code sec-

tion. The prover then executes the program while its trusted tracer

chronologically traces the executed path EP when executing the

region to be attested. Once the program concludes, the execution

path is first hashed together with the verifier’s nonce and some

freshly sampled blinding factor and then signed. The signed digest

and secret ingredients are then given to the worker, who, before gen-

erating a proof over the ZEKRA circuit, first converts the received

execution path into its numerical label representation L using the

address-to-label mappingM, which the circuit can then verify to

be done correctly instead of having to perform the computationally-

intensive conversion task (further optimizations are discussed in

Section 6). The worker then computes a zkSNARK proof by execut-

ing Prove and passing in as secret inputs: the attested program’s

reference materials (i.e., the CFG and address-to-label mappingM,

along with their blinding factors), the attested execution path (in-

cluding its blinding factor), and the numerical representation of the

attested execution path L. As public input, the worker passes in the

digests of the CFG, mappingM, and the execution path, together

with the relevant entry and exit nodes and the verifier nonce.

Finally, the proof, its public inputs, and the prover’s signature

over the execution path commitment digest are given to the ver-

ifier, who is convinced that the intended program was executed

correctly, in the absence of any control-flow attacks, on the prover

if: (i) the proof is satisfied under the circuit’s verification key, (ii) the

execution path commitment supplied as public input to the proof

generation–whose corresponding preimage ingredients were sup-

plied as secret inputs and verified internally in the circuit to hash

to the public commitment digest–was signed by the prover, (iii) the

CFG and mappingM of the intended program were considered,

and (iv) the correct start and end nodes were visited. If these criteria

are satisfied, the verifier is convinced that the intended program

(or segment thereof) was executed correctly on the prover.

5.1 Building Blocks

Before explaining our circuit’s design, we must understand how

we represent and work with execution paths and program CFGs.

Tracing. When chronologically tracing a program’s execution, we

assume that each execution path EP (of some length 𝐸) is mar-

shalled in the form of a sequence of control-flow transitions: EP = (

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia H. B. Debes et al.

Semi-dishonest Worker Untrusted Prover Untrusted Verifier
C, pkC,

{
@P,𝐶𝐹𝐺, 𝑟1,M, 𝑟3, 𝑛▷, 𝑛◀

}
P vkC, tpk,

{
@P,H(𝐶𝐹𝐺 ∥𝑟1),H(M∥𝑟3), 𝑛▷, 𝑛◀

}
𝑛𝑐𝑒 ←$ {0, 1}_@P, 𝑛𝑐𝑒

call tracer to attest execution of P

Trusted Tracer
{tpk, tsk}

EP ← Trace(P)
𝑟2 ←$ {0, 1}_
ℎ2 ← H(EP∥𝑛𝑐𝑒 ∥𝑟2)
Sig← Sign(ℎ2, tsk)

outsource proof of correct verification@P, 𝑛𝑐𝑒, EP, 𝑟2, ℎ2, Sig
ℎ1 ← H(𝐶𝐹𝐺 ∥𝑟1)
ℎ3 ← H(M∥𝑟3)
L ← M(EP) // map addresses to labels
𝑥 ←

{
ℎ1, ℎ2, ℎ3, 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

}
𝑢 ←

{
𝐶𝐹𝐺, EP,M, 𝑟1, 𝑟2, 𝑟3, L

}
(𝑦, 𝜋) ← Prove(C, pkC, 𝑥,𝑢) Sig, 𝑥, 𝑦, 𝜋

Attested program executed correctly (𝑛▷ ⇝ 𝑛◀) if
Vf (Sig, ℎ2, tpk) ∧
Vf (𝑥 \ {ℎ2} =

{
H(𝐶𝐹𝐺 ∥𝑟1),H(M∥𝑟3), 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

}
) ∧

Vf (Verify(vkC, 𝑥, 𝑦, 𝜋) = 1)

Figure 2: The ZEKRA protocol, where, upon request, a prover attests to the execution of a program before outsourcing the task

of convincing the untrusted verifier about the execution’s correctness in zero-knowledge to a semi-dishonest worker.

𝑡1, 𝑡2, . . . , 𝑡𝑛), where each transition 𝑡𝑖 = (𝑗𝑚𝑝𝑘𝑖𝑛𝑑, 𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡) in-
cludes a 2-bit identifier for the type of transition, i.e., whether the

transition was caused by a jump, function call, or function return,

the destination addresss (supposed entry of the target BBL), and a

return node 𝑛𝑟𝑒𝑡 , which for calls points to a BBL where the callee

function should return. Note that knowing the transition type en-

ables shadow stack emulation for ensuring back edge integrity.

Control-Flow Graph Representation. A core part of the ZEKRA

circuit is how we represent and traverse a CFG. To model the set

of legal transitions, we can either encode the set of legal edges as

an adjacency matrix or adjacency list. In the matrix format, we

can represent a digraph 𝐺 = (𝑁, 𝐸) as a two-dimensional array

𝑀 of size 𝑁 × 𝑁 , where a slot 𝑀 (𝑛𝑖) (𝑛 𝑗) = 1 indicates that an

edge exists from node 𝑛𝑖 to node 𝑛 𝑗 . The advantage of the matrix

is that we can determine in O1 whether an edge exists from 𝑛𝑖 to

𝑛 𝑗 . However, since the matrix has space complexity of O|𝑁 |2 it

requires a prohibitively large data structure to be expressed in an

arithmetic circuit. Contrarily, in the adjacency list, we only store a

node’s reachable neighbors, which reduces the space complexity to

O|𝑁 | + |𝐸 | but increases query time complexity to O|𝑁 |. While the

space complexity is better than the matrix, it can become expensive

for dense areas in a CFG where a node might have many reachable

neighbors (e.g., a program switch with a large jump table).

To reduce the space complexity even further, we leverage the idea

behind the IndexedBitArrayEdges representation as proposed in

[36], which takes advantage of the concentration of edges in specific

areas of the adjacency matrix. With this encoded representation we

use a single byte to represent eight possible out-neighbors. Using

an array, we construct a data structure of (𝑏𝑢𝑐𝑘𝑒𝑡 + 8)-bit elements,

one for each neighbor label interval with the same quotient when

divided by 8. Each element’s first 𝑏𝑢𝑐𝑘𝑒𝑡 − 8 bits represents the

quotient (bucket), while the last byte serves as a set of 8 flags

indicating whether each possible edge exists in this interval. Note

that it follows that𝑏𝑢𝑐𝑘𝑒𝑡 must at minimum be ⌊log
2
((𝑁−1)/8)⌋+1

bits for us to represent all possible quotients of CFGs with 𝑁 nodes.

Since the circuit performs execution path verification on CFGs

with all nodes relabeled using consecutive integers (where the

relabeling is reflected in the mappingM), we can represent any

𝑁 -node abstract CFG as a single-dimensional adjacency list of

size 𝑁 , whose indices correspond to CFG nodes and contain the

indexed node’s encoded neighbors. Also, since the maximum label

is 𝑁 − 1 when numbered from 0, the circuit only needs to allocate

⌊log
2
(𝑁 − 1)⌋ + 1 bits per label to represent the execution path.

To better understand how we apply the encoding, assume that

a node has the following set of neighbors: {288, 289, 290, 291, 292,
293, 294, 614}. We can group the neighbors in two sets: {288, 289,
290, 291, 292, 293, 294}, {614}, where the first set shares bucket 36
when divided by 8, and the second set share the bucket 76. We

then iteratively store the bucket of each neighbor set as the first

⌊log
2
((𝑁 − 1)/8)⌋ + 1 bits and the remainders (𝑟𝑒𝑚𝑠) as the neigh-

boring byte. We refer to each such (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pair as a level
and use ℓ to denote the maximum levels of the encoded adjacency

list. Note, however, that the number of levels needed depends on

how the adjacency list’s labels are arranged. For example, in our

example, we require two levels to accurately represent all eight

neighbors, where the 0th to the 6th bit of the first level’s 𝑟𝑒𝑚𝑠 are

set to 1 to indicate the first seven neighbors. However, if we could

rearrange the numerical adjacency list such that the considered

node’s neighbors all shared the same quotient, it would only need

one level. (We defer this graph optimization problem and other CFG

reduction/compression methods as they complement our work.)

Finally, given an encoded adjacency list AL, we determine if

node 𝑛 𝑗 is a valid neighbor of node 𝑛𝑖 by verifying that there exists

some (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pair in AL, such that ⌊𝑛 𝑗/8⌋ = 𝑏𝑢𝑐𝑘𝑒𝑡 ∧
𝑟𝑒𝑚𝑠 [𝑛 𝑗 mod 8] = 1, where 𝑟𝑒𝑚𝑠 [𝑛 𝑗 mod 8] denotes a bit in 𝑟𝑒𝑚𝑠

at position 𝑛 𝑗 mod 8. In other words, we check that the destination

node’s bucket exists and the corresponding remainder bit is on.

AL, EP and M hashing. When selecting a suitable hashing

function H to utilize in our circuit, the deciding factor is how inex-

pensively it can be expressed in an arithmetic circuit. Fortunately,

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

several hash functions have been proposed due to increased at-

tention to circuit-based zero-knowledge proofs. The most recent,

which currently offers the best performance, is the cryptographic

permutation function called Poseidon [22], which takes a set of

elements of a certain field F, called scalars, as inputs and outputs

one scalar. The number of inputs determines the width𝑤 = 𝑟 + 𝑐 of
the internal state, where 𝑟 and 𝑐 are called the 𝑟𝑎𝑡𝑒 and 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 of

the permutation function. Setting the capacity to one field element

in a 254-bit field F offers a 128-bit security level and using a rate

(arity) of 4 essentially corresponds to a 4-to-1 compression function.

In our case, we configured Poseidon-128 with a width of 9 to

achieve a rate of eight field elements per call, which allows us to

walk over the data structures during hashing more quickly. Since

the considered data structures can be arbitrarily/selectively large,

we used the proposed Poseidon constant-length sponge-based

construction [22]. Let 𝑋 = (𝑥1, . . . , 𝑥𝑚) refer to an execution path

EP = (𝑡1, . . . , 𝑡𝑚) of 𝑙-bit transitions, an adjacency list AL = (𝑒1,
. . . , 𝑒𝑚) of 𝑙-bit encoded neighbor entries, or a mappingM = (𝑎1,
. . . , 𝑎𝑚) of 𝑙-bit entries, respectively. We then hash 𝑋 into a single

scalar (i.e., field element) as follows:

(1) Compress 𝑋 by successively fitting ⌊(F’s bitwidth)/𝑙⌋ 𝑙-bit
values from𝑋 into one field element and storing the resulting

value in 𝑋 ′. Let 𝑡 denote the size of 𝑋 ′.
(2) Pad 𝑋 ′ with zero elements up to the multiple of 8, then split

it into chunks𝑤1,𝑤2, . . . ,𝑤 ⌈𝑡/8⌉ .
(3) Apply the permutation function Poseidon to the capacity

element and the first chunk.

(ℎ1
1
, ℎ2

1
, . . . , ℎ9

1
) ← Poseidon(𝑙𝑒𝑛 × 264 + (𝑜 − 1),𝑤1)

(Note that the capacity field is set to 𝑙𝑒𝑛×264+ (𝑜−1), where
𝑙𝑒𝑛 is the input length and 𝑜 is the output length (usually

𝑜 = 1). In our case the input length is 8 field elements, and

the output length is 1 field element.)

(4) Until no more chunks are left, apply the permutation:

(ℎ1𝑖 , ℎ
2

𝑖 , . . . , ℎ
9

𝑖) ← Poseidon(ℎ1𝑖−1, ℎ
2

𝑖−1 +𝑤
1

𝑖 , . . . , ℎ
9

𝑖−1 +𝑤
8

𝑖)

(5) Output 𝑜 output elements from the rate part of the state, i.e.,

in our case, the digest of 𝑋 is the second element:

H(𝑋) = ℎ⌈𝑡/8⌉ (2)

We utilize this sponge construction in our circuit to verify the

considered secret preimages against their corresponding public

digests before relying on them to accurately report on the expected

program’s reference materials and the execution path. Thus, the

public digests must also be computed similarly on the outside.

6 ON THE DESIGN OF THE ZEKRA CIRCUIT

Before detailing our design choices, we briefly overview the differ-

ent circuit components/gadgets. The high-level algorithm of the

ZEKRA circuit is presented in Fig. 3 along with its secret and public

inputs. Note that we have replaced the CFG in Fig. 2 with the en-

coded adjacency list AL of size 𝑁 . After verifying the preimages

and the correctness of the translation of the attested execution path

EP of size 𝐸 into its label representationL, the circuit traverses the
label version of the execution path to verify its legality, according

to the adjacency list and the expected entry and exit nodes.

1 : Vf (H(AL∥𝑟1) = ℎ1) Vf (H(EP∥𝑛𝑐𝑒 ∥𝑟2) = ℎ2)

2 : Vf (H(M∥𝑟3) = ℎ3) Vf (M(L) = EP)
3 : 𝑛𝑐𝑢𝑟 ← 𝑛▷

4 : for (𝑗𝑚𝑝𝑘𝑖𝑛𝑑) ∈ EP, (𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡) ∈ L do

5 : // Forward edge integrity
6 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ≠ ∅ then // not part of padding

7 : Vf (𝑛𝑑𝑠𝑡 ∈ AL(𝑛𝑐𝑢𝑟))
8 : 𝑛𝑐𝑢𝑟 ← 𝑛𝑑𝑠𝑡

9 : // Back edge integrity
10 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑐𝑎𝑙𝑙 then

11 : push(𝑛𝑟𝑒𝑡 , 𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘)
12 : elseif 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑟𝑒𝑡 then

13 : Vf (pop(𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘) = 𝑛𝑑𝑠𝑡)
14 : Vf (𝑛𝑐𝑢𝑟 = 𝑛◀)

ZEKRA circuit C
ℎ1, ℎ2, ℎ3, 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

AL, EP,M, 𝑟1, 𝑟2, 𝑟3,L

Figure 3: High-level algorithm of the outsourceable circuit.

Forward edge integrity. To verify that the execution path satisfies

forward edge integrity, we maintain a state variable 𝑛𝑐𝑢𝑟 (initialized

to 𝑛▷) as we walk the execution path to verify its legality, i.e., that

it is a continuous sequence of transitions that only flow through

neighboring (adjacent) nodes, as follows. For each transition 𝑡𝑖 in

the execution path, we consult 𝑛𝑐𝑢𝑟 ’s neighbors from the adjacency

list and verify that 𝑡𝑖 ’s destination node 𝑛𝑑𝑠𝑡 is indeed listed as a

valid neighbor, and if so, we update 𝑛𝑐𝑢𝑟 to 𝑛𝑑𝑠𝑡 . Thus, by verify-

ing that it reached the final node 𝑛◀ on exit, we are certain, by

transitivity, that the execution path is legal and also correctly con-

nects the expected endpoints. However, note that while a node can

have several reachable and equally valid neighbors in the forward

direction, this is not true for backward edges. Specifically, when a

function returns, it should only return to where the caller intended.
Back edge integrity.Therefore, to ensure exact back edge integrity,

we consider, similar to other CFA schemes [49, 50], the use of a

shadow stack (of some depth𝐷) to simulate the traditional program

stack as we walk the execution path. For function calls, we push

the return node 𝑛𝑟𝑒𝑡 on the stack, and for returns, we verify that

𝑛𝑑𝑠𝑡 indeed is the stack’s topmost element.

6.1 Circuit Design Challenges

Besides the challenges already described, e.g., authenticating exe-

cution paths in Section 5, representing the CFG as a space-efficient

encoded adjacency list, and selecting a suitable hashing method in

Section 5.1, we are missing the actual execution path traversal.

Due to the complexity of expressing computations as circuits,

many circuit construction tools include programmable interfaces

and compilers to optimize the translation of computations expressed

in a higher-level language into circuits [17, 29, 33]. However, while

the circuit compilers let us not worry about the low-level wiring

process, they are not as mature as standard program compilers,

and there are thus many employable techniques to further reduce

the number of constraints needed to express a particular program.

Specifically, note that the complexity of any program in terms of

the number of constraints it compiles down to is the sum of the

cost of expressing all statements, all loop iterations, and account-

ing for all branches (see Appendix B for more details). Therefore,

operations that cannot easily be expressed, e.g., modulo, division,

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia H. B. Debes et al.

exponentiation, “bit twiddling”, and random-memory access, are

costly. Fortunately, as stated in [33], an essential strategy to opti-

mize complexity is the observation that it usually suffices and is

generally cheaper to have a circuit verify a computation’s correct-

ness instead of computing the function in the forward direction.

For example, 𝑦 = 𝑥/𝑎 can be verified more efficiently by checking

that 𝑦𝑎 = 𝑥 rather than computing the division in the forward

direction. Similarly, when working with modular arithmetic, the

joint statements 𝑟 ≡ 𝑥 mod 𝑞, 𝑦 = ⌊𝑥/𝑞⌋, where 𝑞 is the modulus,

can be verified more efficiently by checking that 𝑦𝑞 + 𝑟 = 𝑥 ∧ 𝑟 < 𝑞.

Random-accessed memory. While sequentially walking the ex-

ecution path incurs a negligible cost, verifying each transition’s

destination node 𝑛𝑑𝑠𝑡 according to the 𝑛𝑐𝑢𝑟 th entry inAL requires

random memory access, which is expensive since no information is

known about which element is being accessed during compile-time.

The same applies to verifying that the numeric execution path L is

a correct translation of EP according toM, as shown in (1).

Vf (∀𝑖 ∈ {0 . . . 𝐸} :M(L(𝑖) (𝑑𝑠𝑡)) = EP(𝑖) (𝑑𝑠𝑡)∧
M(L(𝑖) (𝑟𝑒𝑡)) = EP(𝑖) (𝑟𝑒𝑡)) (1)

The typical, naive approach for realizing dynamic memory is

performing a linear scan of the entire array memory to select one

element for each memory access, which results in O𝑘𝑛 cost for mak-

ing 𝑘 memory accesses where𝑛 is the array’s total memory size. An-

other approach, supported by recent compilers [33, 51], involves a

permutation network with complexity O(𝑛 + 𝑘) (log(𝑛 + 𝑘)). How-
ever, seeing how the smart memory recently proposed in xJsnark

[33] has outperformed the permutation network with a complexity

of O𝑘
√
𝑛, promising 2

√
𝑛 + log

2
𝑛 constraints per access, we opted

to express the current version of ZEKRA in xJsnark.

Representing AL. Note that xJsnark currently only supports

one-dimensional arrays with its smart memory type. Therefore, we

have the circuit accept the adjacency list AL = (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠1, . . . ,
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑚) as a single, node label indexable array of field elements,

whose sizes correspond to the size of our finite prime field F𝑝 (in

our case 254 bits), i.e., each node 𝑛𝑖 ’s (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs are con-
secutively concatenated into one 254-bit field element 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 =

𝑝1 | |𝑝2 | | . . . | |𝑝ℓ . However, the challenge with the concatenation is

determining whether a specific destination node 𝑛𝑑𝑠𝑡 is a neighbor

of some node 𝑛𝑖 when 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 is given as a numeric value.

While we could enforce a specific type on AL’s elements, e.g.,

that they be unsigned integers instead of native field elements,

allowing us to iterate over the (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs using either

bitwise or division/exponentiation operations, recall that these op-

erations are expensive. Furthermore, by restricting input values to

𝑛-bit unsigned integers, the circuit must verify that the supplied

values are 𝑛 bits while continuously ensuring that any operation

on the integers results in a value that fits within that range, essen-

tially resulting in 𝑛 + 2 additional constraints for each integer [33].

Contrarily, by keeping the input values as native field elements,

they are guaranteed to remain within a certain bitwidth.

Therefore, instead of retrieving each (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) in the circuit,
we apply the power of SNARK verification by accepting (as secret

input) another two-dimensional (non-smart) array AL′ of size
𝐸 × 2ℓ , containing the pairs already split into separate elements.

However, contrary to AL, we access AL′ sequentially, which is

made possible by requiring AL′ to be ordered with relevance to

the transitions, i.e., the 𝑖th index of AL′ contains 𝑛𝑐𝑢𝑟 ’s pre-split
(𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs at transition 𝑖 , which is easily arranged by

the worker. However, before relying on AL′ (𝑖), the circuit first
verifies that AL′ (𝑖) correctly represents AL(𝑛𝑐𝑢𝑟) by checking

that AL′ (𝑖) computes to AL(𝑛𝑐𝑢𝑟) as shown in (2).

Vf
((∑︁

2ℓ−1
𝑗=0,2,...

AL′ (𝑖) (𝑗 + 1) × 2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)+8

+ AL′ (𝑖) (𝑗) × 2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)
)
= AL(𝑛𝑐𝑢𝑟)

) (2)

Due to space limitations, we detail how we apply further opti-

mizations to efficiently check whether a particular neighbor exists

in Appendix C. Further, Appendix D summarizes the final design.

7 EMPIRICAL PERFORMANCE EVALUATION

Our evaluation addresses the questions of: (i) how efficient is ZEKRA

for different program complexities and (ii) how tolerable are the

combined costs for CFA of real-world deeply embedded applications.

7.1 Asymptotic Performance

Table 1 shows the complexity of our design considering a 254-

bit field F and a Poseidon-128 implementation with an arity/rate

of 8 field elements and a cost of ℭ = 405 constraints per call. For

comparison, we also show the complexitywithout the space efficient

adjacency list encoding described in Section 5.1, i.e., where each

entry in AL is simply the concatenation of that node’s neighbors,

where Δ denotes the maximum supported neighbors of any node.

The first four rows in Table 1 give the complexity of verifying: the

adjacency list (with and without encoding), attested execution path,

and mapping, respectively. Note that it takes a single constraint to

verify that a computed digest matches its corresponding public ref-

erence. Thus, we only consider the complexity of the hashing. Note

here that the bit-space needed when compressing the unencoded

adjacency list into the least number of field elements (to minimize

the number of calls to Poseidon) is directly affected by the number

of supported neighbors Δ (second row). In contrast, the bit-space

needed for the encoded adjacency list is affected by the number of

levels (ℓ) used for the encoding (first row). To illustrate the power

of the encoding, note that we can only store 25 10-bit labels in a

254-bit field element. Thus, since we only have a one-dimensional

adjacency list of field elements, we can only represent adjacency

lists with Δ = 25. However, using the encoding, we can store a total

of 16 levels ℓ of 15-bit (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs (we need 7-bit buckets

when considering 10-bit labels), which can hold 128 labels. Thus,

using the encoding, we can reduce the number of calls to Poseidon

and also represent more complex adjacency lists using fewer bits.

Note that verifying the correctness of the worker’s translation of

an execution path of length 𝐸 requires 2𝐸 accesses toM inside the

circuit since we must verify each transition’s destination address

and (possible) return address. This complexity is shown in row five

of Table 1, which evidently dominates the overall circuit complexity.

The complexity of verifying that each transition’s destination

node is valid according to an encoded or unencoded adjacency list is

shown on rows six and seven of Table 1, respectively. Note that we

accept the pre-split version of AL as a sequentially accessed, two-

dimensional structure AL′ in both cases. For the encoded version,

AL′ contains the (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs as described in Section 6.1.

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 1: Component complexity in terms of the number of constraints when compiled using xJsnark, where ℭ = 405 is the cost

per call to Poseidon. The table also shows the cost if we store digests in AL to emulate more space (beyond F’s bitwidth).

Circuit Component/Gadget Complexity Actual (Asymptotic) Total Cost Using Poseidon digests as AL elements

C1: Vf (H(AL∥𝑟1) = ℎ1) O(𝑁) ℭ⌈(𝑁ℓ (𝑏𝑢𝑐𝑘𝑒𝑡 ’s bitwidth + 8) + 1)/(8F’s bitwidth)⌉ ℭ⌈𝑁 /8⌉
- (wo. AL encoding) O(𝑁) ℭ⌈(𝑁Δ𝑙𝑎𝑏𝑒𝑙 ’s bitwidth + 1)/(8F’s bitwidth)⌉ ℭ⌈𝑁 /8⌉
C2: Vf (H(EP∥𝑛𝑐𝑒 ∥𝑟2) = ℎ2) O(𝐸) ℭ⌈(𝐸2𝑎𝑑𝑑𝑟 ’s bitwidth + 4)/(8F’s bitwidth)⌉ N/A
C3: Vf (H(M∥𝑟3) = ℎ3) O(𝑁) ℭ⌈(𝑁𝑎𝑑𝑑𝑟 ’s bitwidth + 1)/(8F’s bitwidth)⌉ N/A
C4: Vf (M(EP) = L) O(𝐸

√
𝑁) 2𝐸 (2

√
𝑁 + log2 𝑁) + 10𝐸 N/A

C5: Forward edge integrity O(𝐸
√
𝑁) 𝐸 (2

√
𝑁 + log2 𝑁) + 𝐸 (ℓ + 38 + 𝑙𝑎𝑏𝑒𝑙 ’s bitwidth) +𝐸ℭ⌈(ℓ (𝑏𝑢𝑐𝑘𝑒𝑡 ’s bitwidth + 8))/(8F’s bitwidth)⌉

- (wo. AL encoding) O(𝐸
√
𝑁) 𝐸 (2

√
𝑁 + log2 𝑁) + 𝐸 (Δ + 11 + 𝑙𝑎𝑏𝑒𝑙 ’s bitwidth) +𝐸ℭ⌈(Δ𝑙𝑎𝑏𝑒𝑙 ’s bitwidth)/(8F’s bitwidth)⌉

C6: Backward edge integrity O(𝐸
√
𝐷) 2𝐸 (2

√
𝐷 + log2 𝐷) + 𝐸 (28 + 2 log2 𝐷) N/A

For the unencoded version,AL′ contains the individual neighbors.
In both cases, we maintain our state variable (𝑛𝑐𝑢𝑟 in Fig. 3) as an

unsigned integer, which is used to accessAL and whose bitwidth is

determined by the maximum label. Furthermore, in both cases, we

perform a linear search over AL′ to find a match, which requires

either ℓ (using a step size of 2) or Δ iterations with and without the

encoding. (Note that Δ quickly outgrows ℓ .) Finally, while negligible,

note that the slightly higher (constant) cost per transition in the

case of the encoded version is the cost of our proposed method of

verifying a linear system of equations as described in Appendix C

to check if a destination node exists in a (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pair.
Recall that a verifiable program’s complexity in terms of the

number of constraints it compiles down to is the sum of the cost of

all branches (see Section 6.1 and Appendix B). Thus, the complexity

of the back-edge integrity component (last row) includes the sum

of both branches (push and pop) per transition. However, note that

we can usually keep the stack depth, 𝐷 , small (unless attesting to

highly nested/recursive code). Hence the double memory cost for

this component is less significant than that of the fourth component.

Supportingmore neighbors. To store more neighbors inAL, we
need more space per node element. Without compiler support for

two-dimensional RAM, a naive approach is to emulate it with more

arrays. However, in this case, the memory access cost grows pro-

portionally to the number of arrays, i.e., for two parallel arrays, the

cost per transition becomes 2× (2
√
𝑁 + log

2
𝑁). Another approach,

whose cost is also shown in Table 1, is to instead store the hash of a

node’s neighbors as a field element in AL whose preimage is then

given as a two-dimensional array inAL′. Then, for each transition

𝑖 we simply verify that H(AL′ (𝑖)) = AL(𝑛𝑐𝑢𝑟) before perform-

ing a neighbor lookup in AL′ (𝑖), where AL′ (𝑖) now supports an

arbitrarily large neighbor space. Note, however, that this choice

comes at a cost proportional to the number of Poseidon calls we

need to make per transition to perform the verification and thus is

only mentioned as an alternative method for our approach to scale

in support of attesting to arbitrary CFG complexities. Specifically,

to get 8 field elements (the considered arity) of neighbor storage

per node (allowing for ≈ 1024 neighbors using the encoding when

considering 10-bit labels), this comes at the cost of one Poseidon

call per transition, i.e., giving an overall (additional) cost of 𝐸 × ℭ.

7.2 Empirical Performance

Datasets. Table 2 shows some extracted datasets for a selection of

demonstrative applications taken from the embench-iot suite [18],

which comprises a set of real-world, deeply embedded applications
2
.

To ensure reproducibility, we coded helpers [14] to perform all eval-

uation steps. For compilation, we use GCC options -Os -g0 and the
-fno-optimize-sibling-calls flag for deactivating sibling and
tail recursive calls optimizations. We then use the angr [48] binary

analysis tool for extracting static CFGs and sample execution paths

through symbolic execution, where the sample paths simulate paths

as recorded by a prover. To generate the trusted reference material,

we use the NetworkX Python package [25] for translating the ex-

tracted CFGs into isomorphic, numerically labeled representations,

which are then converted into corresponding adjacency lists AL
and used to derive the address-to-label mappingsM.

Labeling. Note that the minimum number of levels (ℓ) needed to

encode a specific adjacency list is determined by the maximum

number of quotients (i.e., buckets) shared by any node’s neighbors,

which depends on the way the nodes are labeled numerically. In

our experiments, we labeled each extracted CFG’s nodes using

consecutive integers in the order they appeared. (We defer the graph

optimization problem of finding the most optimal ordering as future

work.) Note, however, that even without any special preprocessing,

we can already observe in Table 2 for picojpeg how “consecutivity”

among the neighbors of a node allows us to effectively represent

the maximum outdegree Δ = 37 using only ℓ = 7 levels, meaning

we need only 105 bits to encode each node’s neighbors (each level is

15 bits). Without the encoding, we would need 370 bits to represent

37 neighbors, which already exceeds the considered prime field F.
Compression. As noted in [2] and utilized in most CFA works,

the most basic method of reducing the path explosion problem

without loss of accuracy is to prune repetitions in the execution path

since they do not affect the legality of the control-flow. Similarly,

we consider that recorded execution paths are compressed such

that each unique loop path only occurs once, i.e., all consecutively

repeating sequences are discarded. Note that this compression only
removes duplicates in the path, allowing us to use a smaller circuit for

verification. However, the compression does not affect our ability
to detect control-flow attacks (except those that only affect the

number of loop iterations). (We discuss extending our approach to

attesting to the number of loop iterations in Section 8.)

Experimental setup. As described in Section 6.1, we implemented

our solution using xJsnark [33], a high-level code-to-circuit compi-

lation framework that employs a mix of optimizations to minimize

2
Note that these applications only served as data points in our performance evaluation

and were not selected by their need for control-flow attestation in practice.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia H. B. Debes et al.

Table 2: Sample datasets from the embench-iot suite of real-world embedded applications, each with 24-bit address space.

Control-Flow Graph 𝐺 Sample recorded execution path (through symbolic execution)
Application 𝑁 Edges Δ(𝐺) ℓ 𝐸 (prea) 𝐸 (postb) # loops Avg. loop length Avg. # of repetitions 𝐷

aha-mont64 114 151 6 2 997 110 109 2.82 (𝜎 ≈ 1.55) 3.01 (𝜎 ≈ 1.50) 5
crc32 88 106 2 2 3,090 24 1 3.00 (𝜎 ≈ 0.00) 1,023 (𝜎 ≈ 0.00) 6
cubic 147 198 8 3 105 10 1 1.00 (𝜎 ≈ 0.00) 96.00 (𝜎 ≈ 0.00) 5
edn 152 195 2 2 4,889 422 16 5.81 (𝜎 ≈ 12.34) 89.19 (𝜎 ≈ 98.89) 5
huffbench 188 284 3 3 9,894 1,155 84 4.39 (𝜎 ≈ 4.27) 53.77 (𝜎 ≈ 155.81) 6
matmult-int 113 143 8 2 37 37 0 0.00 (𝜎 ≈ 0.00) 0.00 (𝜎 ≈ 0.00) 5
md5sum 129 176 4 3 8,399 382 6 54.33 (𝜎 ≈ 119.26) 537.17 (𝜎 ≈ 490.16) 7
minver 176 252 3 3 324 201 21 5.00 (𝜎 ≈ 6.20) 3.10 (𝜎 ≈ 2.43) 5
nbody 113 140 3 2 108 58 4 5.00 (𝜎 ≈ 0.00) 3.50 (𝜎 ≈ 1.12) 6
nettle-aes 156 211 3 3 1,821 199 11 14.00 (𝜎 ≈ 15.21) 34.27 (𝜎 ≈ 71.00) 7
nettle-sha256 173 245 4 3 295 106 10 2.70 (𝜎 ≈ 3.16) 17.60 (𝜎 ≈ 19.64) 6
nsichneu 853 1500 2 2 659 655 1 4.00 (𝜎 ≈ 0.00) 2.00 (𝜎 ≈ 0.00) 4
picojpeg 633 1168 37 7 1,875 335 6 12.50 (𝜎 ≈ 8.46) 31.67 (𝜎 ≈ 20.90) 11
primecount 105 127 3 3 1,742 1,001 66 8.62 (𝜎 ≈ 11.69) 2.36 (𝜎 ≈ 0.64) 5
sglib-combined 728 1084 5 3 8,191 868 105 12.63 (𝜎 ≈ 16.62) 7.90 (𝜎 ≈ 20.19) 8
slre 347 528 6 2 2,217 609 5 13.40 (𝜎 ≈ 12.47) 10.80 (𝜎 ≈ 16.12) 13
st 123 155 3 3 1,143 65 7 1.57 (𝜎 ≈ 0.90) 99.00 (𝜎 ≈ 0.00) 6
statemate 434 657 2 2 256 102 3 1.34 (𝜎 ≈ 0.47) 31.67 (𝜎 ≈ 22.16) 6
tarfind 102 137 3 3 12,070 443 38 147.0 (𝜎 ≈ 161.36) 13.82 (𝜎 ≈ 40.87) 5
ud 133 174 3 2 393 185 25 3.76 (𝜎 ≈ 2.20) 4.60 (𝜎 ≈ 7.31) 5
wikisort 425 645 7 3 4,610 152 7 26.71 (𝜎 ≈ 50.41) 66.57 (𝜎 ≈ 84.31) 7
abefore and bafter path compression (removing all consecutively repeated sequences).

circuit complexity. The high-level code is compiled into arithmetic

circuits in an extension of the Pinocchio [42] intermediate opcode

format, which, using the jsnark interface [32], are translated into

the R1CS constraint system and fed into the libsnark [35] backend

for instantiating a particular zkSNARK proof system over the cir-

cuit. In our case, we considered libsnark’s implementation of the

state-of-the-art Groth16 [24] proof system (over the BN128 curve),

whose proof is 1016 bits and contains 3 group elements (2 G1 ele-
ments and 1 G2 element), and 3 pairings dominate verification. We

then benchmarked our prototype using libsnark’s built-in profiler,

which includes the generation of the circuit’s proving and verifi-

cation keys and execution of the proof generation and verification

algorithms on our experimental inputs, which were formatted from

our real-world extracted datasets. As the worker, we considered

a machine with an AMD Ryzen 7 3700X processor and 16 GB of

memory (experiments were conducted in a WSL2 environment).

Benchmarks. Table 3 shows benchmarks for generating proofs

over some demonstrative circuits (proof verification is constant due

to Groth16’s underpinnings). Note that when compiling a particular

circuit, we must define the sizes of the data structures we want

to express. However, even if we fix both 𝐸 and 𝑁 to 1K, we can

still supply execution paths and adjacency lists ≤ 1K by employing

padding as described in Appendix D. Thus, the larger circuits in

Table 3 (after the fourth row) support all datasets shown in Table

2. Furthermore, note that the reported running times assume that

the proving key is preloaded in memory, which holds when proof

generation is performed by dedicated workers that expect the key

to be used regularly and thus retain it in memory. Further, note

that we only list the proving key sizes since Groth16’s verification

keys have a constant size of 3312 bits. From the reported timings,

it is evident that we prove the satisfaction of arithmetic circuits at

a rate of ≈ 77.8 constraints/ms on our considered setup.

Whereas the complexity of VC methods that fully convert pro-

grams into circuits to verify each emulated CPU cycle’s correctness

grows with a program’s control-flow and assembly complexity as

described in Section 2, our coarse-grained approach grows only to

the control-flow complexity. For example, the cost per CFG edge

(i.e., control-flow) is ≈ 674 constraints for the fifth circuit in Table

3, which is even less than the per-cycle cost of ≈ 1, 458 in [6]. (Note

also that there are inherently more CPU cycles than control-flow

transitions during a program’s execution.) Thus, while we require a

trust anchor on the prover to record and authenticate a program’s

execution path, we scale better to larger programs. Finally, con-

trary to circuits crafted for particular programs, our circuit allows

attesting to the execution of arbitrary programs via its inputs.

Attesting to executed instructions. While generally not consid-

ered for CFA since the attested program is generally considered to

reside in DEP-protected memory, [53] proposed having the prover

hash the executed instructions along with the BBL addresses to

detect TOCTOU attacks when considering physical (non-invasive)

adversaries who can manipulate program code during runtime. In

this case, the only change in the recorded execution path EP is that

it contains digests instead of the destination and return addresses,

i.e., it becomes a sequence of transitions of the form (𝑗𝑚𝑝𝑘𝑖𝑛𝑑, 𝑑𝑑𝑠𝑡 ,

𝑑𝑟𝑒𝑡), where 𝑑 = H(𝑎𝑑𝑑𝑟 | |𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠). We can easily support this

approach by initially storing H(𝑎𝑑𝑑𝑟 | |𝐵𝐵𝐿𝑎𝑑𝑑𝑟) as the elements of

the translator M instead of only storing the addresses. Further,

note that only the hashing of the attested execution path EP and

the translatorM are affected (rows 3 and 4 of Table 1). Specifically,

assuming 88-bit digests as in [53], each transition will occupy 178

bits (destination and return address and 2 bits for the jumpkind).

Other proof systems. The jsnark interface alternatively supports

libsnark’s implementation of the optimized Pinocchio zkSNARK

proof system [42] as proposed in [6]. However, using this latter sys-

tem [6] over Groth16 [24] showed an increase of ≈ 13% in proving

time and ≈ 45% in proving key size for the largest circuit in Table 3,

including a larger proof size of 2294 bits (7 G1 elements and 1 G2
element). While current SNARK technology is on the borderline

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 3: This table shows the average time (and standard deviation, 𝜎), after 10 iterations, for the worker to generate proofs

over ZEKRA circuits compiled to support different attestation data sizes. Proof verification takes ≈ 2 ms in all cases.

Circuit Config (Data Structure Sizes) Compiled Circuit w. Component Workload Dist. (in %) Worker
𝐸 𝑁 𝐷 ℓ 𝑙𝑎𝑏𝑒𝑙 𝑏𝑢𝑐𝑘𝑒𝑡 𝑎𝑑𝑑𝑟 pkC (MB) # Const. C1 C2 C3 C4 C5 C6 Prove (avg. s)

500 500 15 15 10 bits 7 bits 24 bits 64.638 336,230 7.6 1.6 0.8 38.3 32.1 19.6 4.316 (𝜎 ≈ 0.007)
500 500 15 15 10 bits 7 bits 88 bits 69.327 366,605 7.0 7.0 3.5 35.1 29.5 18.0 4.709 (𝜎 ≈ 0.001)
1000 1000 15 15 10 bits 7 bits 24 bits 134.180 703,669 7.3 1.5 0.7 39.3 32.5 18.7 8.974 (𝜎 ≈ 0.057)
1000 1000 15 15 10 bits 7 bits 88 bits 143.888 764,419 6.7 6.7 3.3 36.1 29.9 17.3 9.730 (𝜎 ≈ 0.008)
1200 1000 15 15 10 bits 7 bits 24 bits 158.907 809,043 6.3 1.6 0.7 39.4 32.5 19.6 10.552 (𝜎 ≈ 0.049)
1200 1000 15 15 10 bits 7 bits 88 bits 170.306 877,893 5.8 7.0 2.9 36.3 30.0 18.0 11.374 (𝜎 ≈ 0.026)

of feasibility, proof systems are evolving increasingly, and thus

we expect to handle (and optimize) larger arithmetic circuits more

efficiently shortly. Furthermore, we note that the workload require-

ments of the worker can be further scaled up using current systems

like DIZK [52], which allows the generation of proofs to be dis-

tributed across machines (workers) in a compute cluster (e.g., EC2).

Additionally, note that proof systems have also recently emerged

that outperform the Groth16 proof system, such as SpartanSNARK

[45], which, compared to libsnark’s implementation of Groth16,

appears to be 2× faster on the worker. See the corresponding works

for details on their proving time and key size complexities.

8 DISCUSSION AND SECURITY PROPERTIES

Comparison with CFA works. While our scheme suffers on the

intermediate worker due to the computational resources currently

needed to generate zkSNARK proofs
3
, we achieve (i) optimal cost on

verifiers, (ii) optimal transmission overhead (towards the verifier),

and (iii) stronger security properties, as opposed to all existing

CFA works [2, 3, 15, 16, 28, 34, 37, 41, 49, 50, 53, 54]. Both (i) and

(ii) are due to the “succinctness” of zkSNARK proof constructions,

where verification is unaffected by circuit complexity, and the proof

size is constant, e.g., with Groth16, the proof only contains three

group elements (totaling 1019 bits). Moreover, besides the proof, the

verifier only needs to receive the circuit’s public inputs, which all

have constant sizes, comprising the considered entry and exit node

labels, three digests, and the verifier’s nonce (whose echo signifies

freshness). Note that in other CFA schemes, the prover generally

transmits the full execution path and a corresponding digest directly

to the verifier. Furthermore, with all other CFA schemes, all verifiers

are assumed to maintain an extensive reference database of all

the possible execution paths [2] (or, more commonly, the attested

program’s CFG [16] due to the difficulty of exhaustively discovering

all such paths beforehand as described in Section 3.3) to check the

legality of attested execution paths. We cover (iii) in Section 8.1.

Execution path compression.While not related to our protocol’s

effectiveness, the considered granularity of the program CFG and

execution paths directly affects the efficiency and scalability of our

approach. As also noted by other works [2, 15, 53], we can, without

sacrificing accuracy, decrease granularity to increase code coverage

by pruning unnecessary edges in a CFG and ignoring repetitions

in the execution path. For example, to simplify a CFG, we can,

similar to inlining, where callee functions are inlined into the caller

functions to reduce complexity, fuse connected nodes where only

3
Which makes it challenging to target complex software, such as that considered by

ScaRR [50] and ReCFA [54], using our scheme due to the worker resources needed.

one path exists between the nodes, e.g., the nodes 𝑛2, 𝑛3 and 𝑛7
in Fig. 1. This, however, requires that the prover’s trust anchor

can identify and translate execution paths into their succinct form,

e.g., if it observes the path 𝑛1 ⇝ 𝑛3 ⇝ 𝑛8 ⇝ 𝑛4 during program

execution, then it records it as a function call from 𝑛1 to 𝑛8 and a

function return to𝑛4. Similarly, tomitigate path explosion caused by

loops, the prover can notice when a sub-path begins consecutively

repeating itself, e.g., 𝑛5 ⇝ 𝑛6 ⇝ 𝑛5 ⇝ 𝑛6, and record it as only

occurring once as considered in our evaluation in Section 7.2.

Limitations.However, on a contrary note, while the current ZEKRA

circuit puts no restraints on the number of loop iterations, ensur-

ing a correct (or safe) number of loop iterations can be significant

depending on the application [2]. Thus, we note the possibility of

extending the circuit to accept a secret policy specifying such loop

bounds. Furthermore, while we currently assume a semi-untrusted
worker, future work can weaken this trust assumption as described

in Appendix A. Finally, besides further optimizations to reduce the

computational resources needed by workers, future work should

investigate the viability of constructing a similar scheme with post-

quantum-secure proof systems, e.g., using STARKs [7].

8.1 Security Properties

Besides its secure implementation, our scheme’s foundational secu-

rity is given by the underlying proof system’s security (and circuit

compiler). Note that for all configurations we ran our prototype on

(hundreds of executions), we recorded no completeness errors.

Unforgeability. Besides negligible error probability for falsely re-

jecting or falsely accepting an execution path or claims about an

execution path as authentic, our scheme is secure against (com-

putationally bounded) adversaries attempting to forge execution

paths due to the utilization of an accompanying signature scheme

with the zkSNARK proof system. For example, suppose a dishonest

worker (i) uses the prover’s signed digest as a public input during

proof generation but uses a different execution path, nonce, or ran-

dom noise, as the secret input, or (ii) additionally computes a digest

over these values to use as the public input instead of the prover’s

digest. In the first case (i), the verifier rejects the proof in the proof

verification stage due to unmet constraints, and in the latter case

(ii), the verifier rejects the proof in the signature verification stage

due to a digest mismatch. Therefore, a dishonest worker cannot

convince the verifier that an illegal (forged) execution path (e.g.,

one that reveals an attack against the attested program) is legal.

Proofs are zero-knowledge. Our scheme ensures that a verifier

only learns whether the expected prover freshly recorded an ex-

ecution path and whether the execution path is legal according

H. B. Debes et al.ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

to the secret AL preimage of a specific trusted reference digest.
Specifically, we ensure that no execution path or CFG details are
disclosed to the verifier by accepting them as secret circuit inputs
and making the reference digests statistically-hiding commitments.
Forward & back edge integrity. The ZEKRA circuit is only satis-
fied if the provided execution path is legal according to the given
AL. The rules are simple. Transitions target adjacent nodes, and
back transitions are shadow stack compliant. By verifying that the
execution path consistently flows through adjacent nodes in the
forward direction (using the adjacency list) and that callees always
return to the contextually correct caller (using the shadow stack),
we ensure fine-grained detection of all control-based attacks. (see
Appendix E for a more extensive description of how the different
control-flow-based attacks result in rejection on the verifier).
Execution path completeness. Like how a CFG precisely models
all program executions, we support attesting to any execution path.

9 CONCLUSIONS

We presented ZEKRA, a novel and effective protocol that utilizes the
combined strength of verifiable computation and control-flow attes-
tation to enable underpowered provers to convince untrusted veri-
fiers about the correct control-flow execution of deeply embedded
programs in zero knowledge. The proposed scheme guarantees the
attested program’s forward and back-edge correctness according
to its reference CFG, using several optimizations for representing
and traversing CFGs. While currently only demonstrated for deeply
embedded applications, our research suggests verifiable computa-

tion based on zkSNARK constructions as a feasible direction for
enhancing CFA schemes with additional privacy guarantees.

ACKNOWLEDGMENTS

The European Commission supported this work under the
CONNECT and ASSURED projects; Grant Agreements 101069688
and 952697.

REFERENCES[1] Martín Abadi et al. 2009. Control-flow integrity principles, implementations, and

applications. ACM TISSEC 13, 1 (2009), 1–40.

[2] Tigist Abera et al. 2016. C-FLAT: control-flow attestation for embedded systems

software. In Proceedings of the 2016 ACM SIGSAC Conference. 743–754.
[3] Tigist Abera et al. 2019. DIAT: Data Integrity Attestation for Resilient Collabora-

tion of Autonomous Systems. In NDSS.
[4] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines.

2020. 5G network slicing using SDN and NFV: A survey of taxonomy, architec-

tures and future challenges. Computer Networks 167 (2020).
[5] Eli Ben-Sasson et al. 2013. SNARKs for C: Verifying program executions succinctly

and in zero knowledge. In Annual cryptology conference. Springer, 90–108.
[6] Eli Ben-Sasson et al. 2014. Succinct non-interactive zero knowledge for a von

Neumann architecture. In 23rd {USENIX} Security Symposium. 781–796.

[7] Eli Ben-Sasson et al. 2018. Scalable, transparent, and post-quantum secure

computational integrity. Cryptology ePrint Archive (2018).
[8] Daniel Benarroch et al. 2021. Zero-Knowledge Proofs for Set Membership: Effi-

cient, Succinct, Modular. In International Conference on Financial Cryptography
and Data Security. Springer, 393–414.

[9] Tyler Bletsch et al. 2011. Jump-oriented programming: a new class of code-reuse

attack. In Proceedings of the 6th ACM AsiaCCS. 30–40.
[10] Sean Bowe, Ariel Gabizon, andMatthewDGreen. 2018. Amulti-party protocol for

constructing the public parameters of the Pinocchio zk-SNARK. In International
Conference on Financial Cryptography and Data Security. Springer, 64–77.

[11] Benjamin Braun et al. 2013. Verifying computations with state. In Proceedings of
the twenty-fourth ACM Symposium on Operating Systems Principles. 341–357.

[12] Xavier Carpent et al. 2018. Reconciling Remote Attestation and Safety-Critical

Operation on Simple IoT Devices. In DAC ’18.
[13] Liqun Chen et al. 2008. Property-based attestation without a trusted third party.

In International Conference on Information Security. Springer, 31–46.

[14] Heini Debes. 2022. Code for ZEKRA. https://github.com/HeiniDebes/ZEKRA

[15] Ghada Dessouky et al. 2017. Lo-fat: Low-overhead control flow attestation in

hardware. In Proceedings of the 54th Design Automation Conference 2017. 1–6.
[16] Ghada Dessouky et al. 2018. Litehax: lightweight hardware-assisted attestation

of program execution. In 2018 IEEE/ACM ICCAD. IEEE, 1–8.
[17] Jacob Eberhardt and Stefan Tai. 2018. Zokrates-scalable privacy-preserving

off-chain computations. In IEEE International Conference on Internet of Things.
[18] Embench. 2022. Modern Embedded Benchmark Suite. https://www.embench.org/

[19] Aurélien et. al. Francillon. 2014. A minimalist approach to Remote Attestation.

In Design, Automation & Test in Europe Conference & Exhibition (DATE).
[20] Rosario Gennaro et al. 2013. Quadratic span programs and succinct NIZKs

without PCPs. In EUROCRYPT. Springer, 626–645.
[21] Shafi Goldwasser et al. 1989. The knowledge complexity of interactive proof

systems. SIAM Journal on computing 18, 1 (1989), 186–208.

[22] Lorenzo Grassi et al. 2021. Poseidon: A new hash function for zero-knowledge

proof systems. In 30th {USENIX} Security Symposium ({USENIX} Security 21).
[23] Jens Groth. 2010. Short pairing-based non-interactive zero-knowledge arguments.

In Asiacrypt. Springer, 321–340.
[24] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

EUROCRYPT. Springer, 305–326.
[25] Aric Hagberg et al. 2008. Exploring network structure, dynamics, and function

using NetworkX. Technical Report. Los Alamos National Lab., Los Alamos, NM.

[26] Caleb Helbling. 2020. Directed Graph Hashing. preprint arXiv:2002.06653 (2020).
[27] Hong Hu et al. 2016. Data-Oriented Programming: On the Expressiveness of

Non-control Data Attacks. In IEEE Symposium on Security and Privacy (SP).
[28] Jianxing Hu et al. 2019. A probability prediction based mutable control-flow

attestation scheme on embedded platforms. In 18th TrustCom/BigDataSE. IEEE.
[29] iden3. 2022. zkSNARK implementation. https://github.com/iden3/snarkjs

[30] Joe Kilian. 1992. A note on efficient zero-knowledge proofs and arguments. In

Proceedings of the twenty-fourth annual ACM symposium on Theory of computing.
[31] Tommy Koens, Coen Ramaekers, and Cees Van Wijk. 2018. Efficient zero-

knowledge range proofs in ethereum. ING. blockchain@ ing. com (2018).

[32] Ahmed Kosba. 2021. Java zkSNARK library. https://github.com/akosba/jsnark

[33] Ahmed Kosba et al. 2018. xJsnark: A framework for efficient verifiable computa-

tion. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 944–961.
[34] Boyu Kuang et al. 2020. DO-RA: data-oriented runtime attestation for IoT devices.

Computers & Security 97 (2020), 101945.

[35] SCIPR Lab. 2020. C++ zkSNARK library. https://github.com/scipr-lab/libsnark

[36] Panagiotis Liakos et al. 2017. Realizing memory-optimized distributed graph

processing. IEEE Transactions on Knowledge and Data Engineering 30, 4 (2017).

[37] Jingbin Liu et al. 2019. Log-Based Control FlowAttestation for Embedded Devices.

In International Symposium on Cyberspace Safety and Security. Springer, 117–132.
[38] Silvio Micali. 1994. CS proofs. In Proceedings 35th Annual Symposium on Founda-

tions of Computer Science. IEEE, 436–453.
[39] Assa Naveh and Eran Tromer. 2016. Photoproof: Cryptographic image authentica-

tion for any set of permissible transformations. In 2016 IEEE S&P. IEEE, 255–271.
[40] Ivan De Oliveira Nunes et al. 2020. {APEX}: A Verified Architecture for Proofs

of Execution on Remote Devices under Full Software Compromise. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). 771–788.

[41] Ivan De Oliveira Nunes et al. 2020. Tiny-CFA: A minimalistic approach for CFA

using verified proofs of execution. arXiv:2011.07400 (2020).
[42] Bryan Parno et al. 2013. Pinocchio: Nearly practical verifiable computation. In

2013 IEEE Symposium on Security and Privacy. IEEE, 238–252.
[43] Eli Ben Sasson et al. 2014. Zerocash: Decentralized anonymous payments from

bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE, 459–474.
[44] Berry Schoenmakers et al. 2016. Trinocchio: privacy-preserving outsourcing by

distributed verifiable computation. In ACNS. Springer, 346–366.
[45] Srinath Setty. 2020. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. In Annual International Cryptology Conference. Springer, 704–737.
[46] Srinath Setty et al. 2012. Taking proof-based verified computation a few steps

closer to practicality. In 21st {USENIX} Security Symposium. 253–268.

[47] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In 14th ACM CCS.
[48] Yan Shoshitaishvili et al. 2016. SoK: (State of) The Art of War: Offensive Tech-

niques in Binary Analysis. (2016).

[49] Zhichuang Sun et al. 2020. OAT: Attesting operation integrity of embedded

devices. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1433–1449.
[50] Flavio Toffalini et al. 2019. ScaRR: Scalable Runtime Remote Attestation for

Complex Systems. In 22nd International Symposium on {RAID}. 121–134.
[51] Riad S Wahby et al. 2014. Efficient RAM and control flow in verifiable outsourced

computation. Cryptology ePrint Archive (2014).
[52] Howard Wu et al. 2018. {DIZK}: A distributed zero knowledge proof system. In

27th {USENIX} Security Symposium ({USENIX} Security 18). 675–692.
[53] Shaza Zeitouni et al. 2017. Atrium: Runtime attestation resilient under memory

attacks. In 2017 IEEE/ACM ICCAD. IEEE, 384–391.
[54] Yumei Zhang et al. 2021. ReCFA: Resilient Control-Flow Attestation. In Annual

Computer Security Applications Conference (ACSAC ’21).

https://github.com/HeiniDebes/ZEKRA
https://www.embench.org/
https://github.com/iden3/snarkjs
https://github.com/akosba/jsnark
https://github.com/scipr-lab/libsnark

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

A TRUST ASSUMPTIONS

On the Trustworthiness of the Worker. Our scheme considers

a resource-constrained prover device capable of securely recording

and signing the execution path taken by a program during run-

time. While the prover wants to assure a verifier that the program

was executed correctly (i.e., in the absence of control-flow attacks),

the prover wants to keep the path and program details private.
Therefore, the prover outsources the signed execution path to a

resourceful worker who produces a zero-knowledge proof of the

path’s correctness which is publicly verifiable and does not reveal

the execution path. However, since the prover gives the secret in-

puts (i.e., the recorded execution path and blinding factors) to the

worker (who must also know all reference materials) for producing

the proof, it must trust that the worker keeps the inputs secret. In

other words, we trust the worker regarding the posterior privacy

of the secret circuit inputs to satisfy our protocol’s privacy goals as

described in Section 4. However, the worker is not a trusted party
since the worker can attempt to cheat in producing the proof (e.g.,

by tampering with the inputs), which is why we require verifiable

computation to let verifiers detect such dishonest behavior. There-
fore, since the worker is trusted regarding posterior input privacy

but untrusted regarding proof generation, we refer to the worker as

semi-dishonest. For future work, we note the possibility of further

weakening our trust assumptions (on the worker) by hiding the se-

cret inputs, e.g., by employing multiparty computation techniques

based on Shamir’s secret sharing [44].

Minimal Trusted Computing Base. As mentioned in Section

4, a prover is a low-end embedded device with limited resource

capabilities. Hence, it is highly desirable to restrict the influence of

the underlying trusted component (i.e., trust anchor) on the normal

execution of the host, which is a common barrier affecting the gen-

erality and applicability of existing remote attestation schemes to

safety-critical systems [12]. Thus, ZEKRA’s design choice is to fol-

low a minimalist attestation approach [19], assuming the existence

of a root-of-trust with only those properties needed to attain remote

attestation services. These include recording a program’s execution

path and cryptographic functions for signing the recorded execu-

tion path to guarantee origin authentication. Note that for the latter,

the resource overhead is mainly determined by the hashing since

the signing operation is independent of the execution path size, as

only a fixed-size hash is signed. For the former, one natural way to

extract an executing program’s execution path is to equip devices

with tracing capabilities, e.g., by leveraging existing processor hard-

ware features and commonly-used IP blocks, as done by the tracer

proposed in LO-FAT [15]. Note that while tracing program execu-

tion is relatively efficient with minimal perturbation, interpreting

(i.e., translating in our case) raw memory addresses and verifying

the recorded execution path’s correctness is complex as it relies

on additional trusted reference materials. ZEKRA decouples these

two functionalities (recording and translating/verification). Thus,

ZEKRA enables a minimal trust anchor that only needs recording

support without additional decoding capabilities. Specifically, the

trust anchor only records raw traces (capturing sequences of mem-

ory addresses visited), which are then sent to the worker for the

more complex and program-specific task of convincing the ver-

ifier that the execution path was correct according to a specific

program’s trusted reference materials. Resolving this inherent link

between tracing and program-specific decoding, ZEKRA supports

devices with continuous (non-intrusive) tracing capabilities (e.g.,

ARM Coresight) which offer negligible impact on the performance

of the programs executing in the normal world. Specifically, note

that recording execution paths is an efficient and program-agnostic

process and, thus, can easily fit inside a small trust anchor. Espe-

cially since only the hash of the recorded execution path, which is

being accumulated during program execution, needs to be securely

stored, while the path itself can reside in unprotected memory,

as done in most CFA schemes. However, since the verification is

program-dependent, it would require the trust anchor to maintain

all trusted reference materials (i.e., CFGs and translator mappings,

which can grow large for complex binaries, and also all possible en-

try/exit node pairs, including semantical information to determine

which pair to consider for each attestation) in secure memory for

each of the programs (and attestable segments thereof) offered by a

prover. We would also require additional mechanisms on provers to

guarantee attestation freshness to verifiers. Furthermore, the trust

anchor’s responsibility becomes even more complex if we consider

systems with the possibility of over-the-air updates since the trust

anchor would need additional logic to update its trusted reference

materials. Therefore, it becomes clear that reconciling the needs

of safety-critical applications and remote attestation security re-

quirements through a minimal architecture for the underlying trust

anchor enables ZEKRA to support practical remote attestation with

minimal requirements over the prover’s computational resources.

In this process, we remain agnostic regarding the underlying hard-

ware by making the fewest possible assumptions about specific

devices, thus pushing towards a more lightweight blueprint that

can be realized on a wide range of low-end devices, with minimal

modifications and assumptions on required secure hardware.

B HIGH-LEVEL PROGRAMS AS CIRCUITS

To illustrate what we mean by cost, first imagine the ZEKRA algo-

rithm in Fig. 3 as a standard program that we want to transform

into an arithmetic circuit. When the code is fed to a circuit compiler,

it will flatten out the code by unrolling the loop to the worst-case

number of iterations (as determined by the size of the execution

path data structure, set to some value 𝐸) while taking each branch

of each conditional statement into account for each iteration. Then,

the compiler will convert the code to single static assignments,

which are then transformed into one or more constraints [11, 51].

The result is a concise set of constraints (or equations) that is satis-

fied only when all variables hold all equations simultaneously. For

a simple statement “𝑎 = 𝑏”, the equivalent constraint set might con-

sist of the constraints representing 𝑎, the constraints representing

𝑏, and an additional constraint relating the outputs of 𝑎 and 𝑏 [46].

C EFFICIENT GRAPH TRAVERSAL IN A

LINEAR SYSTEM OF EQUATIONS

While we can use AL′ to efficiently (i.e., inexpensively) access

𝑛𝑐𝑢𝑟 ’s encoded neighbors as we iterate over the execution path as

described in Section 6.1, which operations we use to check whether

a particular neighbor exists directly impacts the circuit’s perfor-

mance. For example, using the mathematical equations outlined in

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia H. B. Debes et al.

Section 5.1, we can effectively determine if 𝑛𝑑𝑠𝑡 is listed as 𝑛𝑐𝑢𝑟 ’s

neighbor at the execution path’s 𝑖th transition by checking that

AL′ (𝑖) (𝑙) = ⌊𝑛𝑑𝑠𝑡/8⌋ andAL′ (𝑖) (𝑙 +1) [𝑛𝑑𝑠𝑡 mod 8] = 1 hold for

some level 𝑗 , where 𝑗 is an even number and 0 ≤ 𝑗 < 2ℓ − 1. How-
ever, while the integer division and modulo operations, ⌊𝑛𝑑𝑠𝑡/8⌋
and 𝑛𝑑𝑠𝑡 mod 8, are not exceptionally expensive due to the con-

stant divisor (arbitrary modulo operations, however, are expen-

sive, especially on prime fields as they require a range check:

𝑎 = 𝑞𝑏 + 𝑟, 𝑟 < 𝑏), the latter equation assumes bitwise operations to

access bit (𝑛𝑑𝑠𝑡 mod 8) of 𝑟𝑒𝑚𝑠 , which can become prohibitively

expensive if done repeatedly. Specifically, to access individual bits of

an 𝑛-bit integer-carrying wire, e.g., 𝑟𝑒𝑚𝑠 , in the circuit, we require,

at a minimum, a similar number of constraints to cover each bit of

the wire. Thus, to alleviate the need to access individual bits using

bitwise operations, we transform the equations into pure algebraic

expressions as shown in (3), where the left-hand side of the latter

equation mathematically accesses the value of the (𝑛𝑑𝑠𝑡 mod 8)th
bit of 𝑟𝑒𝑚𝑠 by first pruning the bottom (𝑛𝑑𝑠𝑡 mod 8) bits using
integer division and then cherry-picking the low order bit of the

result using modulo.

⌊𝑛𝑑𝑠𝑡/8⌋ = 𝑏𝑢𝑐𝑘𝑒𝑡

⌊𝑟𝑒𝑚𝑠/2𝑛𝑑𝑠𝑡 mod 8⌋ mod 2 =

{
0, bit is unset

1, bit is set

(3)

Thus, if we find a pair (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) ∈ AL′ (𝑖) (𝑛𝑐𝑢𝑟) satisfy-
ing (3) for some transition 𝑖’s destination node 𝑛𝑑𝑠𝑡 , we know that

𝑛𝑑𝑠𝑡 is a valid neighbor of 𝑛𝑐𝑢𝑟 , i.e., 𝑛𝑐𝑢𝑟 ⇝ 𝑛𝑑𝑠𝑡 is legal. The

remaining challenge, however, is that the components of the lat-

ter equation in (3) require expensive variable integer division and

variable exponentiation.
However, applying the power of SNARK verification, rather than

doing the variable integer division ⌊𝑟𝑒𝑚𝑠/2𝑛𝑑𝑠𝑡 mod 8⌋ and variable

exponentiation 𝑒 = 2
𝑛𝑑𝑠𝑡 mod 8

in the circuit, we make the prover

supply the answer of the integer division (the quotient, 𝑞1, and

remainder 𝑟1) and exponentiation 𝑒 , and then in the circuit we

verify that 𝑒𝑞1 + 𝑟1 = 𝑟𝑒𝑚𝑠 , where 𝑟1 < 𝑒 , and 𝑒 is the expected

product of 2
𝑛𝑑𝑠𝑡 mod 8

. Note that we can efficiently check whether

𝑒 is the expected product since we work with a constant divisor of

8 and can therefore create a fixed sequence of all possible products:

𝑃 = (20, . . . , 27). Thus, in the circuit we only need to check that ∃𝑖 :
𝑒 = 𝑃𝑖 ∧ 𝑖 = 𝑛𝑑𝑠𝑡 mod 8 holds, which is integrated as a linear search

over the elements of 𝑃 andmade efficient by favoring the discounted

price of math operations in the native field F over a conditional

statement, i.e., we program the lookup as:

∏
7

𝑖=0 ((𝑛𝑑𝑠𝑡 mod 8) −𝑖) +
(𝑒 − 𝑃𝑖), which becomes zero if 𝑒 is as expected for 𝑛𝑑𝑠𝑡 . Further,

to account for the modulo 2 in (3), we make the prover supply

the answer to the integer division 𝑞2 = ⌊𝑞1/2⌋ and corresponding

remainder 𝑟2 = 𝑞1 mod 2, which we verify inside the circuit by

checking that 2𝑞2 + 𝑟2 = 𝑞1. Note here that 𝑟2 corresponds to the

left-hand side computation of the latter equation in (3). Thus, we

know to accept 𝑛𝑑𝑠𝑡 as a neighbor if all equations hold and 𝑟2 = 1.

In total, the circuit accepts five additional secret inputs, 𝑒, 𝑞1, 𝑟1,

𝑞2, 𝑟2, which work as hints for the circuit to more efficiently check

whether a particular destination node 𝑛𝑑𝑠𝑡 is legal by verifying a

system of linear equations. Similar to the adjacency listAL′, which
contains 𝑛𝑐𝑢𝑟 ’s (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs pre-split for every transition as

Table 4: Auxiliary variables (hints) that allow the circuit to

efficiently verify that a transition’s destination node 𝒏𝒅𝒔𝒕
exists in the current node 𝒏𝒄𝒖𝒓 ’s encoded neighbor list. Basi-

cally, for some (𝒃𝒖𝒄𝒌𝒆𝒕, 𝒓𝒆𝒎𝒔) ∈ AL′(𝒏𝒄𝒖𝒓):

Worker computes Variable in 𝝅𝒆𝒙𝒊𝒔𝒕𝒔 Circuit verifies

2𝑛𝑑𝑠𝑡 mod 8 𝑒 𝑒 = 2𝑛𝑑𝑠𝑡 mod 8

⌊𝑟𝑒𝑚𝑠/𝑒⌋ 𝑞1 𝑒𝑞1 + 𝑟1 = 𝑟𝑒𝑚𝑠

𝑟𝑒𝑚𝑠 mod 𝑒 𝑟1 𝑟1 < 𝑒

⌊𝑞1/2⌋ 𝑞2 2𝑞2 + 𝑟2 = 𝑞1
𝑞1 mod 2 𝑟2 𝑟2 = 1

𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑛𝑑𝑠𝑡/8

we walk over the execution path, the circuit accepts the additional

five secret inputs that prove a transition’s destination node’s validity

as a two-dimensional (sequentially accessed) array, 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 , which

is also ordered by transitions. See Table 4 for a summary of the

computation and verification of the input variables/hints.

D FINAL DESIGN OF THE ZEKRA CIRCUIT

Fig. 4 shows the high-level code with the optimizations described

in Section 6.1 and Appendix C, which is compiled into the ZEKRA

circuit. As secret input, the circuit accepts: an encoded adjacency

list AL of length 𝑁 (or padded to equal 𝑁) representing the at-

tested program’s CFG, some execution path EP of length 𝐸 (or

padded to equal 𝐸) corresponding to the recorded execution path,

the mappingM for translating the attested program’s addresses

into numeric labels, the random padding used as a blinding factor

for the adjacency list (𝑟1), execution path (𝑟2), and mapping (𝑟3), re-

spectively, the auxiliary adjacency listAL′ containing the decoded
𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠 pairs of the expected AL entry for each transition,

the translation of the execution path addresses into numeric la-

bels L, and finally, the auxiliary proofs 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 to help verify each

transition’s destination node’s validity. As public input, the circuit

accepts: the digests of the adjacency list (ℎ1), execution path (ℎ2),

and the mapping (ℎ3), respectively, an initial node 𝑛▷, a final node

𝑛◀, and the verifier’s nonce 𝑛𝑐𝑒 . Note that to transform our high-

level program into a circuit, we must clearly define the bounds of

all data structures we want to be expressed (i.e., for which we want

constraints to be generated). However, while we can easily pad

adjacency lists to match 𝑁 before supplying them as input (thus

supporting different program complexities with the same circuit),

the same does not immediately apply to the execution paths. Note

that the execution path through a program might vary drastically

between different executions. Thus, to support varying sizes of

execution paths, it must be padded to the appropriate length (𝐸)

by appending “empty” transitions, which is detected in the circuit

when 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 2. Furthermore, to allow translating padded tran-

sitions usingM, we reserve an entry (M+1) whose value is used as
both the destination and return address in each padded transition.

Given the inputs, we verify that the secret adjacency list, attested

execution path, andmapping are indeed the correct preimages of the

corresponding public digests by first compressing and then hashing

each data structure using our implementation of the circuit-friendly

ZEKRA: Zero-Knowledge Control-Flow Attestation ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

1 : // public and secret circuit inputs

2 : public
{
ℎ1, ℎ2, ℎ3, 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

}
3 : secret{AL[𝑁], EP[𝐸] [3],M[𝑁 + 1], 𝑟1, 𝑟2, 𝑟3,
4 : AL′ [𝐸] [2ℓ], L[𝐸] [2], 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 [𝐸] } // hints
5 : external{ // code executed by worker to compute hints
6 : 𝑛𝑐𝑢𝑟 ← 𝑛▷ // keep state during traversal
7 : for 𝑖 = 0 . . . 𝐸 do // compute hints for each step

8 : AL′ (𝑖) ← split(AL(𝑛𝑐𝑢𝑟))
9 : L(𝑖) (𝑑𝑠𝑡) ← { 𝑗 |M(𝑗) = EP(𝑖) (𝑑𝑠𝑡) }
10 : L(𝑖) (𝑟𝑒𝑡) ← { 𝑗 |M(𝑗) = EP(𝑖) (𝑟𝑒𝑡) }
11 : 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 ← Table 4(EP (𝑖) (𝑑𝑠𝑡),AL′ (𝑛𝑐𝑢𝑟))
12 : 𝑛𝑐𝑢𝑟 ← L(𝑖) (𝑑𝑠𝑡) }
13 : // circuit code
14 : 𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘 [𝐷]
15 : Vf (H(AL∥𝑟1) = ℎ1)
16 : Vf (H(EP∥𝑛𝑐𝑒 ∥𝑟2) = ℎ2)
17 : Vf (H(M∥𝑟3) = ℎ3)
18 : Vf (∀𝑖 ∈ {0 . . . 𝐸} : M(L(𝑖) (𝑑𝑠𝑡)) = EP(𝑖) (𝑑𝑠𝑡)∧
19 : M(L(𝑖) (𝑟𝑒𝑡)) = EP(𝑖) (𝑟𝑒𝑡))
20 : 𝑛𝑐𝑢𝑟 ← 𝑛▷ // keep state during traversal
21 : for 𝑖 = 0 . . . 𝐸 do // walk the execution path
22 : 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ← EP(𝑖) (𝑗𝑚𝑝𝑘𝑖𝑛𝑑)
23 : (𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡) ← (L(𝑖) (𝑑𝑠𝑡), L(𝑖) (𝑟𝑒𝑡))
24 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ≠ ∅ then // not an empty (padded) transition
25 : 𝑏𝑢𝑐𝑘𝑒𝑡 ← ⌊𝑛𝑑𝑠𝑡 /8⌋
26 : 𝑝𝑜𝑠 ← 𝑛𝑑𝑠𝑡 mod 8
27 : 𝑒,𝑞1, 𝑟1, 𝑞2, 𝑟2 ← 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 (𝑖)

28 : Vf
((∑︁2ℓ−1

𝑗=0,2,...
AL′ (𝑖) (𝑗 + 1)2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)+8

29 : + AL′ (𝑖) (𝑗)2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)
)
= AL(𝑛𝑐𝑢𝑟)

)
30 : Vf

((∏7

𝑗=0
(𝑝𝑜𝑠 − 𝑗) + (𝑒 − 𝑃 𝑗)

)
= 0

)
31 : Vf (2𝑞2 + 𝑟2 = 𝑞1)
32 : Vf (𝑟2 = 1)
33 : Vf (∃ 𝑗 ∈ {0, 2, . . . , 2ℓ − 2} :
34 : AL′ (𝑖) (𝑗) = 𝑏𝑢𝑐𝑘𝑒𝑡 ∧
35 : AL′ (𝑖) (𝑗 + 1) = 𝑒𝑞1 + 𝑟1)
36 : 𝑛𝑐𝑢𝑟 ← 𝑛𝑑𝑠𝑡 // progress CFG state
37 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑐𝑎𝑙𝑙 then

38 : push(𝑛𝑟𝑒𝑡 , 𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘)
39 : elseif 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑟𝑒𝑡 then

40 : Vf (pop(𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘) = 𝑛𝑑𝑠𝑡)
41 : Vf (𝑛𝑐𝑢𝑟 = 𝑛◀)

Figure 4: The high-level ZEKRA program code, which can be

compiled into an outsourceable circuit.

Poseidon [22] hashing function H as described in Section 5.1. As-

suming that the digests were correct, the circuit proceeds to verify

that the worker’s translation L of the execution path addresses

into their corresponding numeric labels was done correctly accord-

ing toM. Then, knowing that L accurately reflects the attested

execution path in the abstract world ofAL, the circuit proceeds to
traverseAL using L to verify that the execution path: (i) began at

the expected 𝑛▷, (ii) contains only transitions that are conformant

to the adjacency list, and (iii) ends at the expected final node 𝑛◀.

The traversal is done by instantiating a state variable 𝑛𝑐𝑢𝑟 to 𝑛▷,

which, as we iterate over each transition (𝑗𝑚𝑝𝑘𝑖𝑛𝑑, 𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡) in
the execution path, we verify that 𝑛𝑑𝑠𝑡 is a valid neighbor of 𝑛𝑐𝑢𝑟
by consulting 𝑛𝑐𝑢𝑟 ’s auxiliary adjacency list, as follows. We first re-

trieve 𝑛𝑐𝑢𝑟 ’s encoded neighbors by accessing 𝑛𝑐𝑢𝑟 ’s encoded entry

inAL (which is expensive since RAM is expensive), which we com-

pare against the current transition’s 𝑛𝑑𝑠𝑡 ’s entry in AL′ (whose
access is cheap since we access it sequentially). If the entries match,

we know that we can securely rely on AL′ to accurately report

𝑛𝑐𝑢𝑟 ’s neighbors, which we leverage to efficiently verify whether

𝑛𝑑𝑠𝑡 is a valid neighbor of 𝑛𝑐𝑢𝑟 by verifying that the current tran-

sition’s proof in 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 is valid with respect to some 𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠

pair in AL′ as described in Section C. If 𝑛𝑑𝑠𝑡 is determined to be

a valid neighbor, we update 𝑛𝑐𝑢𝑟 to 𝑛𝑑𝑠𝑡 and progress to the next

transition. Moreover, while iterating over the path, we maintain a

shadow stack to ensure exact back edge integrity as described in

Section 6. Finally, we conclude by verifying that 𝑛𝑐𝑢𝑟 reached 𝑛◀.

The circuit is only satisfied if all verifications were successful.

E REJECTION OF CONTROL-FLOW ATTACKS

To evaluate ZEKRA in terms of detecting control-flow attacks

(i.e., preventing proofs from being accepted when execution paths

are illegal), we tested several paths bearing real code injection or

ROP/JOP attack patterns. Note that the ZEKRA circuit, when com-

piled, is a concise set of constraints (or equations) that is satisfied

only when all variables hold all equations simultaneously. This con-

straint system includes both the set of constraints from the forward-

edge integrity component, which requires jumps and calls to target

valid neighbors, and the set of constraints from the backward-edge

component requiring returns to target the contextually-valid node.

Thus, if an execution path contains any transition that causes any
constraint to fail, then the verifier rejects the proof. Thus, as ex-

pected, conventional control-flow hijacking attacks that employ

code injection result in rejected proofs since they add transitions

to the execution path which target nonexistent CFG nodes.

Similarly, code-reuse attacks such as ROP and JOP are detected

and rejected by the verifier since they cause an execution path

to contain transitions that target invalid neighbors. Furthermore,

if a function’s return address is hijacked to execute a malicious

gadget sequence, then this will also cause an unfulfilled constraint

in the backward-edge integrity component since the shadow stack’s

topmost entry will not match this new node. Furthermore, note

that the execution path must also, at a minimum, be translatable

to its numeric representation according to the program-specific

address-to-label mapperM. Therefore, in the case of control-flow

hijacking, e.g., when stitching together a chain of gadgets for ROP,

where an adversary might include branches to unexpected offsets

within a BBL instead of its starting address, this is always caught

sinceM will not include such entries. However, note that the circuit

is limited to detecting control-flow attacks, i.e., DOP attacks (see

Fig. 1), even impure, will remain undetected unless the reference

CFG forces legal executions through designated routes in the CFG.

	Abstract
	1 Introduction
	2 Related Works
	3 Background
	3.1 Program Composition
	3.2 Runtime Attacks
	3.3 Toward CFA in Zero-Knowledge

	4 System and Threat Model
	5 The ZEKRA Protocol
	5.1 Building Blocks

	6 On the Design of the ZEKRA Circuit
	6.1 Circuit Design Challenges

	7 Empirical Performance Evaluation
	7.1 Asymptotic Performance
	7.2 Empirical Performance

	8 Discussion and Security Properties
	8.1 Security Properties

	9 Conclusions
	Acknowledgments
	References
	A Trust Assumptions
	B High-Level Programs as Circuits
	C Efficient Graph Traversal in a Linear System of Equations
	D Final Design of the ZEKRA Circuit
	E Rejection of Control-Flow Attacks

