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Executive Summary

Deliverable D4.1 documents the initial results of the CONNECT Workpackage WP4. It specifies
the user stories and core security architecture of CONNECT . The questions that this deliver-
able answers are ”How can hardware security and a hardware root of trust be used to protect
critical CONNECT components?”, ”How can the trustworthiness of CONNECT components and
services be validated?”, and ”What keys are required and how can them be used?”.

The deliverable is structured as follows: We first survey state of the art and basic concepts
of ”Trusted Computing”. We then provide additional details on the high-level architecture that
was outlined in Deliverable D2.1: We provide more detail on architectural components, the key
management and the underlying Trusted Execution Environment with a focus on Intel SGX that is
provided by many of today’s off-the-shelf CPUs. To document the requirements of different user
groups, we then provide User Stories. These User Stories specify the desired behavior and bring
the architecture to live. Each user story describes a desired usage by certain user groups or user
roles. This includes user stories from Task 4.1, 4.2, 4.3, and 4.5. We then outline our hardware-
based trusted execution architecture based on Intel SGX in more detail. This provides design
and implementation details underpinning the corresponding user stories that were documented
earlier. It includes outputs of Tasks 4.1 and 4.2. A focus is on improving usability of Intel SGX
by introducing and extending the Gramine Library OS. This Library OS enables developers to
seamlessly transform Linux-style application into applications that run within the protected space
(”enclave”) that is provided by Intel SGX. We conclude the deliverable with a first attempt at
formalizing the security requirements for our key management. This documents results of Tasks
4.3, 4.4, and 4.5.
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Chapter 1

Introduction and Overview

1.1 Scope and Purpose

This deliverable constitutes the first outcome of CONNECT WP4. It provides an overview over
the security architecture of CONNECT with a focus on concepts for hardware-protected execution
in so-called Trusted Execution Environments (TEE).

One goal of CONNECT is to define a security architecture for the vehicle. This deliverable pro-
vides a high-level overview over this architecture. The security architecture will address multiple
key objectives:

• Define and introduce key concepts of Trusted Computing.

• Identify the key security components of the architecture that constitute the Trusted Com-
puting Base of CONNECT and identify, key management, flows, and document the Trusted
Execution Environment that will be used as the Root of Trust for CONNECT .

• Document user stories that describe how users can use this architecture and what security
requirements we aim to guarantee for those users.

• Provide details on the Trusted Execution Environment and its required extensions for CON-
NECT .

• Outline formalized security and operational assurance requirements.

This document will be the foundation for implementing our Trusted Execution Environment that is
the foundation of the project and will also be used as a starting point of future refinement that will
be published as D4.2 in Project Month 18.

1.2 Relationship with other WPs & Deliverables

With the documentation of the detailed internal architecture of the CONNECT Trusted Execution
Environment (TEE) and the envisioned extensions, as the core building block for safeguarding all
operations supporting the continuous trust assessment of any actor and/or data object, this
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Figure 1.1: Relation of D4.1 with other WPs and Deliverables.

Deliverable (D4.1) sets the scene for the design of all respective security protocols and mecha-
nisms that will constitute the core innovation of WP4 in the context of the provided Trusted Com-
puting Base (TCB). More specifically, it provides a detailed documentation of the functionalities
(through an extended list of engineering stories depicting the functional specifications of
each envisioned trust enabler) that need to be supported for covering all secure life-cycle man-
agement protocols and interfaces (that will be described in detail in the context of D4.2 [14]): from
the secure on-boarding and enrollment of all applications/services, and CONNECT -related se-
curity components including the establishment of the necessary cryptographic primitives for their
later interactions with other CCAM actors via secure and authenticated communication channels)
to the run-time monitoring and extraction of system measurements/properties, serving as
trustworthiness evidence, and reaction policy enforcement mechanisms to any indication of
risks and changes in the trust state of a device (state migration of a device).

All these operations will be wrapped within the CONNECT TCB that is responsible for exposing
the appropriate set of well defined TEE Device Interfaces (TDIs) linked to the run-time monitoring
of an extended set of device characteristics, serving as evidence to the CONNECT Trust As-
sessment Framework (D3.1 [11]). On top of that, CONNECT will be offering novel TEE Guard
Extensions (TEE-GSE) for enabling the functionality of such advanced secure life-cycle control
mechanisms in the context of of secure containers. The are built on top of the TCB (each con-
tainer will be equipped with its own CONNECT TCB) for continuously interacting with the trust
anchor so as to then be able to provide the necessary evidence to all other requesting compo-
nents for been able to perform any of the operations described in the next section.

In this context, Figure 1.1 depicts the direct and indirect relationships of D4.1 to the other Tasks
and Work Packages (WPs). First, it commences with a detailed State-of-the-Art analysis on
the various types of secure elements that can serve as the underlying Root-of-Trust (RoT) for
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supporting the secure execution and enforcement of various trust policies (as deployed by the
CONNECT TAF). As it will be elaborated, while CONNECT remain agnostic to the type of RoT
used, all protocols will be instantiated over the Grammine technology (under the umbrella of the
Intel SGX TEE). Intel’s Gramine technology was selected due to its capability to allow for the
transformation of a software binary to its trusted-equivalent, executing in an isolated environ-
ment, with no update requirements in the code and without affecting its inter-dependencies with
other parts of the loaded software stack. Essentially, it allows the instantiation of any binary to be
launched as part of an isolation environment called an enclave. This is a rather new technology,
developed under the umbrella of the well-established SGX TEE technology, where CONNECT
envisions to provide concrete trust extensions for allowing for the secure communication between
the “trusted” and “untrusted” worlds of a host device (TEE-I/O) when sharing the monitored de-
vice traces serving as trustworthiness evidence to be securely forwarded to the CONNECT TAF.
Based on this, D4.1 then puts forth a detailed description of the CONNECT overarching TEE
architecture that will govern the secure operation of all deployed components. This will set the
scene for both subsequent WP4 deliverables where the details mechanisms will be designed but
also for WP5 where the orchestration of services to be instantiated on the MEC will be described.
Apropriate security mechanisms for supporting one of the core visions of CONNECT towards
secure task offloading will be designed in the context of WP4.

In continuation to these activities, D4.1 also documents the required behaviors/operations that
need to be supported by the designed CONNECT TCB and TEE-GSE. These illustrate function-
alities that will be used to provide trustworthiness evidence, for the enabling the continuous trust
assessment activities (designed in WP3), and how this evidence is securely shared with other
CCAM actors in a privacy-preserving manner. It is these set of functional specifications that will
guide the subsequent activities of the protocol designs of WP4.

1.3 Open Challenges and Outlook

The focus of this Deliverable has been on the underpinnings of the CONNECT security architec-
ture designed for supporting the in-vehicle operations and trust calculations. In D4.2, the con-
sortium will be expanding this architecture to also capture the security controls considered when
interacting with the CCAM services and CONNECT -related security services that are instantiated
on the MEC.

1.4 Deliverable Structure

The remainder of this deliverable is structured in the following chapters:

Chapter 2 gives an overview over the state-of-the-art for Trusted Computing. This includes con-
cepts like ”Trusted Computing Base”, ”Root of Trust”, and ”Trusted Execution Environments”. In
particular TEEs are a core hardware feature that is required by the CONNECT architecture.
A Trusted Execution Environment (TEE) allows users to execute certain components with well-
defined security guarantees that are enforced by the hardware, which acts as a Trusted Comput-
ing Base (TCB).

Chapter 3 provides a high-level specification of the CONNECT trusted execution architecture.
We start by describing the CONNECT TEE Guard Security Extensions (TEE-GSE), the other de-
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vices, such as Electronic Control Units (ECUs), in the vehicle and the information flows between
them. To complete this chapter we then focus on key management, an important part of ensuring
that data in the vehicle (trustworthiness evidence, data from sensors and control signals to actu-
ators) can be checked and verified. We also rationalize the TEE choices made in the CONNECT
project.

Chapter 4 specifies important required behaviors of our architecture using so-called ”user sto-
ries”. They document the requirements of different roles / user groups of the CONNECT Project.
Each user story outlines well-defined usages by given user roles / groups together with their se-
curity and functional requirements. This serves as a high-level description of requirements that
need to be satisfied by the services and architecture that is provided by CONNECT .

In Chapter 5 we now detail the Intel SGX hardware Trusted Execution Environment (TEE) to be
used in CONNECT . While Chapter2 surveyed the state of the art and gave a high-level overview
over the Intel SGX hardware TEE, we now focus on the software stack to be used in CONNECT .
A focus is the Gramine Library OS that allows seamless migration of Linux applications into a
run-time environment that is protected by the Intel SGX TEE.

In Chapter 6 we extend the requirements outlined earlier by formalizing the requirements on
our key management in a formal model that will later allow us to formally verify a subset of our
security objectives.
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Chapter 2

Introduction to Trusted Computing

Chapter 2 gives an overview over the state-of-the-art for one of the foundational pillars of the
CONNECT architecture, namely “Trusted Execution Environments (TEEs)”. TEEs provide the
trusted computing capabilities necessary for verifying that calculations/operations (as part of a
service graph chain) are performed by trustworthy systems. A TEE may also be able to verify
other (remote) components and therefore help implementing the zero-trust principle of ‘never
trust, always verify ’ prior to establishing a trust relationships between CCAM actors.

The goal is to use the Trusted Computing concepts to establish trust – layer by layer – into the
complete architecture. This starts from the hardware built-in capabilities providing a TEE (as the
underlying Root-of-Trust) and expands by verifying the software layers and essential (remote)
services (see Section 3.2 describing the CONNECT Trusted Computing Base (TCB)). This stack
can then produce evidence to CONNECT ’s vehicle-wide trust assessment and quantification
process that can be verified by other (external) stakeholders.

One core driving factor behind CONNECT ’s overarching architecture (as described in D2.1 [13])
is to enable a Connected, Co-operative and Automated Mobility (CCAM) ecosystem where ser-
vices are decomposed over the far edge, edge and cloud and still operate in a zero-trust man-
ner [41]. The goal of such a zero-trust architectures is to minimize the required trust and permit
stakeholders to validate that their security requirements are met. The concept of trusted com-
puting allows the provision of strong guarantees towards the secure execution of selected safety-
critical components, thus, guaranteeing and simplifying the trust relationships between all layers
in the system run-time stack. This chapter introduces key concepts of trusted computing that we
will later use when outlining the CONNECT architecture and surveys the state of the art.

2.1 Basic Concepts of Trusted Computing

2.1.1 What is Trusted Computing Base (TCB)?

End users of a secure system often rely on critical services of a system. Even more so, in auto-
motive systems, availability and safety of the vehicle may depend on correctness and availability
of certain services. To correctly provide such services, the architecture must ensure that certain
critical components always behave as expected by the users or else fail safely. Because misbe-
havior of services that guarantee given requirements of the user often cannot be detected by the
users themselves, this is called the TCB [40].
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In general, the TCB may include communication, storage, and computation. Software developers
may use encryption to protect data in transit and data at rest. For example, remote users can
connect to the application server via secure network channels using SSL/TLS and VPN. All data
travelling through these network channels are encrypted while in transit, such that a potential
attacker cannot learn any secrets. As another example, software typically encrypts data before
writing it to the hard disk, so that even if attackers gain access to private files, they cannot discern
the stored secrets.

Formally, we define a ”TCB for a given requirement of a service or a function” as the set of
hardware, firmware, services, and/or software components that are required to function
correctly in order to guarantee that this requirement is met.

It follows from this definition that different requirements on a service may require different TCBs.
For instance, while the TCB for confidentiality of a real-time mapping service may include the
components used for end-to-end encryption, the TCB for availability of the same service may
include a hot-spare system that allows fail-over at run-time without interrupting the service.

Note that it is best practice to consider the TCB at design-time. TCBs can be designed to be
static or extensible. A static TCB is designed to protect a fixed set of requirements and cannot
extended. E.g. a Trusted Platform Module (TPM) chip provides fixed functions to allow integrity
protection by means of attestation.

In CONNECT we aim to implement an extensible TCB that allows the TCB to be dynamically
extended. We achieve this by using a modern TEE where new components can be added at
run-time, are protected by the TEE, and as a consequence can extend the TCB.

2.1.2 Minimizing the TCB

The TCB can grow to be very large. It is a well-known empirical fact that the larger a component
is, the more bugs lurk in it [34]. As a consequence, there is a higher risk of bugs and defects.
Furthermore, by definition, a single bug in the TCB can compromise the given requirement that it
protects. This constitutes a significant risk for critical services.

To mitigate this risks, designers aim to minimize the TCB. In particular for (security) critical ser-
vices, designers usually try to minimize the size of the TCB. For instance, a small hardware
security module for storing keys usually has a lower risk of compromise compared to a large
cloud service providing the same function.

2.1.3 What is a Root of Trust (RoT)?

The (hardware) Root of Trust (RoT) is the minimal set of security guarantees – usually provided
as built-in hardware capabilities – that is sufficient to protect a TCBs. The design goal is to
ensure protection of a (usually software-based) TCB under the assumption that a well-defined
set of security functions are provided by the (usually hardware) RoT.

Again, the RoT can be large, such as a whole micro-controller in a Hardware Security Module
(HSM), or can be smaller, like an encryption engine with loaded keys. One advantage of a hard-
ware Root-of-Trust (RoT) is that it usually cannot be modified by its owner. As a consequence, it
can provide a mechanism to build trust with a remote user; i.e., the remote user must gain trust
that her application running in an untrusted environment is executed as expected and that the
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Figure 2.1: Compromised OS in an untrusted environment may leak sensitive data
while it is in use.

application secrets are protected. To this end, hardware-based TEEs provide remote attestation
capabilities.

2.1.4 What is a Trusted Execution Environment (TEE)?

A Trusted Execution Environment (TEE) provides a secure and isolated environment for perform-
ing critical activities, such as computations, that must be executed with a high degree of assur-
ance. The concept based on which the TEE is built on, is the distinction between the ”trusted” and
the ”untrusted” world of the host where the TEE is instantiated. By separating the two worlds, a
TEE manages to create a safe environment that protects against unauthorised access as well as
disclosure or tampering of confidential information. A Trusted Execution Environment can protect
confidentiality and integrity of enclosed, loaded code and data. In other words, TEEs provide a
confined, isolated domain in which the application runs, and this domain appears completely
opaque to other software running on the same server. TEEs are one type of technology that can
serve as a Root-of-Trust for supporting the secure execution of safety critical binaries.

One goal of a TEE is to remove the untrusted and large operating system from the TCB:
Once the size of the TCB has been minimized and separates the software TCB from the under-
lying hardware RoT, the TCB often still includes the operating system and most of the hardware
(e.g. memory and storage). To further enhance the security of the TCB, designers then (a) min-
imize the required trust into the hardware, and (b) further minimize the software that is required
to be trusted by removing the operating system out of the TCB. But why is it important to protect
an application from a compromised operating system?

Typically, software needs to manage various types of secrets, such as encryption keys, authenti-
cation credentials, financial information, and so on. These days, software developers offload their
software to run on public clouds or in other untrusted environments. Second, a minimal TCB with
only the trusted application and underlying hardware is enough to protect the application from a
compromised operating system.

However, when data is used in the actual computation happening on the untrusted server (data in
use), it is processed unencrypted within the CPU. In other words, data is completely in the clear
as soon as it moves into the memory of the server. If the attacker controls the server – either by
installing malware or simply by the virtue of having physical access to the server – the attacker
can steal application secrets. Figure 2.1 illustrates this issue.

As such, there is a need to protect and isolate sensitive application data in CPU memory during
active computations. For instance, the CONNECT TCB provides the necessary capabilities for
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the runtime monitoring of device characteristics (e.g., device configuration, integrity of the loaded
software stack, control-flow integrity, etc.), constituting security claims, that need to be shared
between entities that wish to establish a trust relationship. Validation properties may range from
static properties such as integrity measurements of the host CCAM actor (e.g., vehicle), enabling
the generation of static evidence of the vehicle’s components correct configuration, to dynamic
properties for verifying that Actual Trust Level (ATL) calculations are performed by a trustworthy
software. All these security claims, serving as trustworthiness evidence for the vehicle-wide
trust appraisal, need to be provided in a verifiable manner so as to not compromise the trust
assessment process. Hence, as it will be described in Section 3.2, it is imperative to consider
the secure execution of all processes required for the construction of such security claims to
be protected by the SW/HW trusted computing co-design - the CONNECT TEE Guard Security
Extensions (TEE-GSE) and TCB.

2.2 State of the Art on Trusted Computing

2.2.1 State of the Art on Hardware-based Roots-of-Trust

To protect a software TCB, well-defined hardware security guarantees are essential. This is
where the term trusted computing has been introduced providing technologies and proposals
for resolving computer security problems through hardware enhancements. Trusted Computing
Group (TCG) is an industrial standards organisation that aims to create TPM specifications. Its
main objective is to develop, define and promote open, vendor-neutral, global industry specifica-
tions and standards, supportive of a hardware-based RoT, for inter-operable trusted computing
platforms. To that end, there is a need for trusted hardware. Examples of such hardware solutions
include TPM, TEE , Device Identifier Composition Engine (DICE) (Device Identifier Composition
Engine) and Physically Unclonable Functions (PUFs), which will be further discussed in the fol-
lowing subsections.

In the CONNECT envisioned use cases (as documented in D2.1 [13]), these hardware devices
can be used as a RoT where we can store keys, ensure authentication, support attesta-
tions, and perform many other tasks in a secure manner. In what follows, we will introduce
these examples with more details while in Section 3.5 we elaborate on the selection of Grammine
SGX-enabled technology as the trust anchor for instantiating all newly developed CONNECT se-
cure life-cycle management controls. However, all these protocols (that will be presented in detail
in D4.2 [14]) are agnostic to the type of secure element used as long as the underlying RoT can
provide the core properties of RoT for storage, reporting and measurement [13]. Grammine tech-
nology was selected due to its capability to allow for the transformation of a software binary to
its trusted-equivalent, executing in an isolated environment, with no update requirements in the
code and without affecting its inter-dependencies with other parts of the loaded software stack.
Essentially, it allows the instantiation of any binary to be launched as part of an isolation envi-
ronment called an enclave. This is a rather new technology, developed under the umbrella of the
well-established SGX TEE technology, where CONNECT envisions to provide concrete trust ex-
tensions for allowing for the secure communication between the “trusted” and “untrusted” worlds
of a host device (TEE-I/O) when sharing the monitored device traces serving as trustworthiness
evidence to be securely forwarded to the CONNECT Trust Assessment Framework. CONNECT
defines a TEE Device Interface Protocol (TDISP), extending the TDISP [25] as defined by
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the IETF RATS WG 1, for supporting secure TEE-I/O virtualization towards the provision
of specific TEE Device Interfaces (TDIs) allowing the secure extraction of run-time system
measurements depicting the trust state of the target device.

Trusted Platform Module (TPM): The TPM standard defines a hardware chip. When a TPM is
embedded in its host platform, it serves as the Root of Trust for measurement and report. The
TPM is also used as a cryptographic engine, which supports general cryptographic functionalities,
such as digital signatures, encryption and message authentication. It also supports secure and
flexible key management solutions, for example, it can implement light-weight multiple-layers key
hierarchy with a very small amount of internal memory. With the key hierarchy architecture, the
TPM can securely store cryptographic key material, which helps build security solutions in IoT.
The nature of hardware-based cryptography ensures that the information stored in the TPM is
better protected than software-preserved data. The TPM serves as a trust anchor for a host
platform it is embedded in. It creates proof attestations about the state of the host system,
e.g., certifying the boot sequence the host is running on. These attestations are called Direct
Anonymous Attestation (DAA) ([7]; see Section 3.2.1). A DAA allows to sign attestation values
anonymously while demonstrating that the TPM issuing the signature was part of a group of ”valid
TPMs”. This is achieved by so-called Group Signatures.

Hardware Security Modules: The HSM is a hardware device that supports cryptographic pro-
cesses such as key generation, sign and encryption, as well as key management and key stor-
age within a computing environment. It may act as a RoT due to its cryptographic abilities and
tamper-resistant environment. For the purposes of CONNECT , electronic control units (ECUs)
with HSMs will be able to attest to the results of the secure boot process and measurement of the
device’s executables. However, these will be the only security guarantees that can be provided.
The measured software, forming the TCB, will run in ‘normal’ un-protected memory and this will
need to be taken into consideration when defining the trust model for the vehicle.

Device Identifier Composition Engine (DICE): DICE stands for Device Identifier Composition
Engine. The engine is embedded in hardware in the first immutable boot loader that loads the first
component off-chip. DICE is suited for embedded devices and is lightweight solution compared
to TPM and Intel SGX. At the same time, the DICE is embedded within the same chip, thus,
unlike TPMs allows for a threat model that include the chip boundary only. The Device Identifier
Composition Engine is based on the first level of mutable code and Unique Device Secret that
can be embed by the owner of the device (or the manufacturer). The assumption in the DICE is
that the first mutable code is a boot level that does not change and thus, the engine will always
deduce the keys based on 1) Unique Device Secret UDS or 2) hash of first boot level. DICE
enables a solution that does not rely on strict hardware but allow family of hardware and software
techniques that rooted back in hardware. The DICE using the hardware and software techniques
provide Root of Trust for reporting (attestations), Root of Trust for storage (data encryption), and
other deterministic seed for cryptographic functions. DICE security standard is created by the
Trusted Computing Group (TCG) and supported by Microsoft’s open-source project RIoT core 2,
which acts as the first boot level security extension that does not change during runtime. DICE
Architecture is a simple and new security approach suit for Internet of Things (IoT) and embedded
devices that does not increase silicon requirements and provide the ability to owners to embed
their own secret keys and own the entire attestation solution and identity of the device. The DICE

1https://datatracker.ietf.org/wg/rats/documents/
2“RIoT - A Foundation for Trust in Internet of Things”, [Available Online]: https://www.microsoft.com/

en-us/research/wp-content/uploads/2016/06/RIoT20Paper-1.1-1.pdf, [Github]: https://github.com/

microsoft/RIoT
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architecture, with its hardware Root of Trust for measurement, breaks the software stack up into
layers and creates unique secrets and a measure of integrity for each layer which means that
any point in time, it can create comformity certificates of integrity for each software layer/process.
Thus, DICE architecture allows a safe deployment and verification of software updates, which
often are a source of malware and other attacks.

2.2.2 State of the Art on Trusted Execution Environments (TEEs)

A wide range of TEEs has been proposed for the automotive industry [31] - from simple HSMs
like AUTOSAR SHE3 to complete shielded and tamper-proof subsystems (e.g. the IBM4765
cryptographic co-processor). According to the CONNECT specification from D2.1 we aim to ”run
CONNECT software within a hardware protected environment”. As such we focus on TEE func-
tionalities provided by commercial off-the-shelf CPUs. The rationale is that we intend to pursue
an integrated approach where non-security and security parts co-exist on the same hardware
platform. TEEs typically consist of several components:

• Secure Bootstrapping to ensure the system starts at a secure initial state.

• Secure Input/Output to provide an end-to-end path for secure communication with net-
work, storage, and other peripheral devices.

• Isolated Execution to protect data in use.

• Remote Attestation to prove the trustworthiness of TEE to a remote party.

• Secure provisioning to obtain secrets from a remote party.

ARM TrustZone

ARM TrustZone [4] is a feature that provides TEE support for ARM-based CPUs. It originally was
launched as a feature of mobile devices in 2004 [33]. The core idea of TrustZone is to virtually
partition the CPU into an untrusted world and a trusted world. The untrusted world then runs the
commercial mobile OS (e.g. Android) while the trusted world (running a special secure OS) then
only hosts security-critical services 4.

Intel SGX

Intel SGX [16] is a feature of Intel CPUs. Unlike TrustZone, it does not partition the complete CPU
into trusted/untrusted but allows each user-space application to declare so-called ”enclaves” that
protect a subset of an application. The CPU then provides dedicated protections of integrity and
confidentiality of this enclave.

Intel SGX enables user-level code to allocate exclusive memory locations, known as enclaves,
that are specifically designed to be protected from programs operating at higher privilege lev-
els. Applications can communicate with the enclave by invoking a trusted function, which can

3https://www.autosar.org/fileadmin/standards/R21-11/FO/AUTOSAR_TR_SecureHardwareExtensions.

pdf
4https://github.com/enovella/TEE-reversing provides a curated survey of TrustZone-related resources.
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be run within a secure enclave. The enclave only allows authorized functions to execute, and
any attempts to access enclave data are denied by the processor. Hardware-level encryption
protects against software-based attacks, ensuring sensitive data remains undisclosed even if a
hacker gains control over the operating system and BIOS. Enclaves may autonomously produce
and store their own exclusive signing/attestation keys, thereby excluding any external party from
accessing them. Data may exclusively be signed by utilizing keys that are linked to certain in-
struction sets, operating within each enclave.

A simple and illustrative example is a Browser that can partition-out its built-in password manager
into a dedicated enclave. The CPU then ensures that the password manager is confidentiality
and integrity protected. I.e. the memory and storage of the password manager is encrypted.
The OS and applications cannot read the passwords, except the access provided by the API that
is implemented inside the enclave. Furthermore, if an attacker then tries to launch a modified
password manager to export the passwords, the CPU will refuse to launch it or will not allow this
modified password manager to gain access to the encrypted passwords.

Note that one challenge when using SGX is that the Operating System (OS) still has strong
influence over the enclave and thus writing code that remains secure even if attacked by the OS
is challenging. Attack frameworks like SGXstep [39] allow the adversary outside the enclave to
excercise fine-grained control which may result in leakage of secrets.

Securing Virtual Machines (ARM SEV, Intel TDX)

While Intel SGX protects a portion of a user-space application as an enclave within a TEE, the
more recent proposals AMD Secure Encrypted Virtualization (AMD SEV) [1] and Intel Trusted
Domain Extensions (Intel TDX) [27] aim at protecting complete virtual machines. They aim at a
cloud environment where one server with a hypervisor runs multiple virtual machines. The goal
is to protect the contents of each virtual machine against malicious behavior of other VMs and
against the hypervisor. This is achieved in AMD SEV by (a) associating a key with each VM that
is managed by the CPU and not exportable, (b) to use this key to encrypt the memory whenever it
leaves the CPU, and (c) to encrypt all registers whenever the VM starts running. For AMD SEV ,
a few attacks have been published (e.g. [29]), Intel TDX has only been release in 2023.

2.2.3 Run-time Environments for TEEs

TEEs by itself are usually hardware features to support trusted execution. Since the hardware
features of a CPU are often complex and difficult to use for application developers, a wide range
of software frameworks have been proposed to simplify development, provisioning, and debug-
ging of TEE applications. The open source community provides other frameworks that follow the
Library OS approach – for example, the Gramine Library OS project [37, 38], Haven [6], SCONE
[5], Occlum [35] or Panoply [36]. These frameworks put the whole application inside the SGX en-
clave. Only a small chunk of original logic stays untrusted, namely, input/output (I/O) functionality
such as networking, file system, other system calls, and so on.
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2.3 Intel Software Guard Extensions (Intel SGX)

Within CONNECT we will use the lightweight Grammine variant of Intel SGX TEE that is
summarized in Section 2.3.1 and described in more detail in Section 5.1, where we will
also provide details on the Gramine Library OS. The main reason is that the goal of the
project is to perform research and rapid prototyping of technologies to be protected by a TEE . As
a consequence, the main requirements we had were as follows:

Availability: The TEE should be widely available to all partners in the consortium.

Open: The TEE should be usable by any developer without additional (expensive) tools or re-
strictive licenses.

Tools: A wide range of tools should be available - ideally as open source.

Ease of use: Developing applications for this TEE should be easy and similar to developing
traditional applications.

Extensibility: The TEE should support an extensible TCB, i.e. new software components can
be added to the TCB at run-time to meet emerging security requirements.

No lock-in: The developed applications should not be entangled with the TEE and should be
portable to other TEEs (if they are powerful enough).

Overall, we believe that the Intel SGX technology meets these requirements: It is widely available
(in many off-the-shelf CPUs), supported by tools, open, and does not imply a vendor lock-in.
Furthermore, the TCB is extensible since additional enclaves can be started any time and added
to a running application.

Note that Intel SGX technology provides some CPU instructions and usually is not used without
additional tools. It only provides the building blocks, but the actual SGX applications require the
use of a software development framework that supports SGX. We already mentioned several
such frameworks – Intel SGX SDK, Gramine, etc. In the following sections, we will concentrate
on Gramine and its usage, as well as on the tools to run SGX applications in secure containers.
The Gramine Library OS that is summarized summarized in Section 3.5.1 and described in more
detail in Chapter 5.

2.3.1 A High-level Overview of Intel SGX

In CONNECT we aim at using the Intel SGX Trusted Execution Environment in an automotive
context. The Intel Software Guard Extensions (Intel SGX) technology was introduced in 2015 with
the Intel Skylake architecture [2, 18]. Intel SGX provides software developers the environment to
secure their code and data even on untrusted and potentially compromised platforms. Developers
can partition their code into CPU-hardened “enclaves” and place the security sensitive parts of
their applications inside these SGX enclaves. Intel SGX-enabled CPUs protect selected code
and data from disclosure or modification. Secrets that are used by the application are stored and
operated on inside the enclave while the rest of the system cannot access this memory area.

Hardware-protected and isolated execution inside SGX enclaves provides a trusted execution en-
vironment at the application layer (process-based TEE). Intel SGX overcomes the shortcomings
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Figure 2.2: Classic application execution model vs Intel SGX protected execution
model: In Intel SGX, the CPU provides an isolated Enclave while other parts no longer
need to be trusted.

of the traditional protection model where the privileged software has full access to all data of any
application. This is illustrated in Figure 2.2.

In a classical model, the application developer has to trust the whole hardware/software stack
since she does not have control over the entirety of its components. As explained before, protec-
tion is provided by the TCB, which requires the developer to trust all of the underlying software
and hardware. Any vulnerability of any component in the software/hardware stack becomes a
vulnerability of the whole system, resulting in a system-wide attack surface.

With Intel SGX, the developer places sensitive code and data inside a so-called SGX enclave at
the application layer. Code and data inside the enclave is protected by the CPU and inside main
memory (DRAM). CPU limits access to the protected area to only the enclave code. No other
software can gain access inside the enclave. Thus, the attack surface is reduced to the enclave
code/data and Intel SGX hardware.

Intel provides the Intel SGX Software Development Kit (SDK) – a framework that allows to write
manually-partitioned applications for SGX [17]. However, a significant challenge when program-
ming with Intel SGX Software Development Kit (SDK) is that it requires a lot of manual effort to
partition the application into trusted and untrusted parts. First, the developer must manually de-
sign and program the host-to-enclave interface. Depending on the size of the application and on
the richness of this interface, this may be time-consuming and error-prone. Second, the developer
must be very careful to bring all sensitive data and logic inside the enclave.

2.3.2 A History of Trusted Execution Environments at Intel

The history of confidential computing solutions at Intel is rich and long. First, Intel introduced
the Intel VT-x (also called simply Intel virtualization) technology around 2005, that introduced the
“virtual execution mode” to Intel processors, which could be entered and exited using special new
instructions. This allowed to create hardware-assisted virtual machines, or VMs, that could run
isolated from each other and from the virtual machine monitor (or VMM, also called hypervisor).

Around the same time, Intel introduced a technology called Intel Trusted Execution Technology
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(Intel TXT). This technology uses a Trusted Platform Module (TPM) to measure the code and
initial state of the computer and to build a chain of trust during boot. In the context of confidential
computing and virtualization, Intel TXT allows to gain trust in the VMM, since it is hardware-
measured by the CPU and is thus guaranteed to be a known good VMM implementation in a
known good initial state.

But these technologies provide no confidentiality guarantees. To help improve confidentiality of
customer workloads, in 2021 Intel presented Total Memory Encryption (Intel TME for short) that
allows to encrypt all memory on the platform, to prevent software attacks as well as hardware
physical attacks on RAM. A refinement of this technology called Multi-Key TME (MK-TME) allows
to encrypt not just with one encryption key, but with multiple encryption keys; thus it becomes
possible to encrypt each VM with its own key, such that each VM becomes completely opaque to
any other collocated VM.

In the meantime, Intel introduced Software Guard Extensions (Intel SGX) around 2014. Intel
SGX is unique in this list of technologies because it does not use virtualization technologies.
Instead, Intel SGX is able to create opaque “enclaves” on the platform, and enter and exit these
SGX enclaves using special new instructions. Intel SGX was the first confidential computing
technology from Intel that allowed to completely remove all software from the TCB, including
the Operating System, Virtual Machine Monitor (VMM), and any other software, privileged or
unprivileged. Intel SGX is sufficiently easy to deploy: it requires only a driver in the OS, and
a software framework to run applications inside SGX enclaves: either an SDK, that requires re-
writing and re-factoring applications to use SGX-specific SDK APIs, or a Library OS, that requires
no modification or recompilation of the app.

Finally, currently Intel is focusing on a new technology called Intel Trust Domain Execution (or Intel
TDX). Intel TDX is similar to Intel SGX in that it’s a full fledged Confidential Computing solution
– it creates opaque “Trust Domains” (basically, encrypted and integrity-protected VMs) that are
not accessible even by the privileged Cloud Service Provider software, such as OS or VMM.
In contrast to Intel SGX, Intel TDX is based on the virtualization technology and thus operates
on a more familiar level of complete virtual machines (rather than single applications or parts of
applications). In contrast to Intel MK-TME, Intel TDX not only encrypts the VM but also stops the
hypervisor from accessing the VM. The enablement of Intel TDX is a bit more complicated than
that of Intel SGX: both the VMM and the guest Operating System require some modifications; on
the other hand, no modifications to the applications that run inside the TD are required.
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Chapter 3

High-Level Overview over the CONNECT
Trusted Execution Architecture

After having described the core building block based on which the entire CONNECT framework
is built upon – integration of a Trusted Execution Environment for safeguarding all operations sup-
porting the continuous trust assessment of any CCAM actor and/or data object, in what follows
we delve into the architectural details of CONNECT ’s trust extensions. These essentially cover
all secure life-cycle management protocols and interfaces (that will be described in detail in the
context of D4.2 [14]): from the secure on-boarding and enrollment of all CCAM application-
s/services, instantiated in the vehicle and/or Mobile Edge Cloud (MEC), and CONNECT -related
security components including the establishment of the necessary cryptographic primitives (for
their later interactions with other CCAM actors via secure and authenticated communication
channels) to the run-time monitoring and extraction of system measurements/properties,
serving as trustworthiness evidence, and reaction policy enforcement mechanisms to any in-
dication of risks and changes in the trust state of a device (state migration of a device). All
these operations are supported by CONNECT ’s two main trusted computing pillars:

• CONNECT TCB: This constitutes the palette of security mechanisms and ancillary pro-
cesses that are required by all components offering the envisioned secure life-cycle man-
agement schemes. They are those hardware-, software- and firmware-based services, that
are by default trusted, the combination of which is used towards the enforcement of a se-
curity policy. Part of CONNECT ’s TCB (as will be detailed in Section 3.2) comprises the:
(i) tracing capabilities, based on the newly developed TEE Device Interfaces (TDIs), to be
exposed for capturing the continuous extraction of an extended set of device characteris-
tics (as required by the Trust Assessment Framework (TAF)) in a verifiable manner, (ii) key
management module for setting up and governing the use of all application- and security-
related keys that need to be setup during the secure on-boarding of a device (Section 3.3),
and (iii) key usage restriction policy engine for checking the validity of deployed policies
protecting the use of the created (signing) keys only when the state of a device is at an ex-
pected state. The TCB must always behave as expected, otherwise, there is a risk for the
entire trust assessment process to get exploited. Therefore, the entire TCB software stack
configuration is monitored, stored and continuously verified by the underlying Root of Trust
(RoT) so as to make sure that it is not altered. As described in Section 2.1.1, the TCB is
minimized and constitutes the trust anchor for all applications/services that are instantiated
in secure environments and for which we want to guarantee high operational assurance.
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• CONNECT TEE Guard Extensions (TEE-GSE): These comprise the secure containers
offering the necessary functionality of the secure life-cycle management processes. The
are built on top of the TCB (each container will be equipped with its own CONNECT TCB)
for continuously interacting with the trust anchor so as to then be able to provide the nec-
essary evidence to all other requesting components for been able to perform any of the
operations described in the next section.

Recall that while CONNECT protocols have been instantiated over the Gramine technology, they
remain agnostic to the type of secure element used as long as the baseline of characteristics for
a Root-of-Trust are offered: Root of Trust for Storage, Reporting, and Measurement [13].

3.1 CONNECT High-Level Security Architecture Including
TEE Guard Extensions

The TEE Guard Security Extensions (TEE-GSE) are comprised by a set of CONNECT system
components. These components play a crucial role since they provide the necessary run-time
security guarantees which ensure the correct usage of all cryptographic primitives, and conse-
quently facilitate the provision of trustworthiness evidence in a verifiable manner. These evidence
may be consumed either internally (i.e., within the boundaries of the vehicle) by the TAF , among
other information, to derive to the Actual Trust Level (ATL), or they could be sent in the form
of Verifiable Presentation (VP)s outside the vehicle (i.e., to other vehicles or the infrastructure),
enabling the CCAM vision as introduced in D2.1 [13].

The need for this continuous and real-time extraction of evidence arises from the dynamic nature
of trust states, associated with both nodes and data. In a dynamic environment, where trustwor-
thiness can evolve rapidly, real-time evidence extraction becomes crucial to adapt to changing
conditions and promptly assess, thus respond to potential security threats or alterations in the
trust landscape. The continuous evidence extraction process ensures that the trust states of
nodes and data are properly reflected, enabling the system to maintain an up-to-date and accu-
rate understanding of the trust levels across the CONNECT ecosystem. Delving into the contents
of these evidence, trust properties may be included such as integrity, robustness, availability, se-
curity, etc. More information regarding the trust properties is available at D3.1 [11].

The CONNECT TEE-GSE is built on top of the underlying RoT , while as a framework it
remains agnostic to the employed trusted computing technology. Overall, CONNECT aligns
with the zero-trust principle, which is based on the notion that no entity can be inherently trusted,
even when it operates within the vehicle. Hence, all nodes should be able to provide evidence
regarding their trustworthiness. This notion further applies to the MEC side, enabling the Chip-
to-Cloud vision of CONNECT by providing strong security enablers across the entirety of the
CCAM ecosystem from the vehicle (far edge) to the MEC and Cloud. In the present deliverable,
we focus the descriptions on CONNECT’s security and trust extensions deployed at the vehicle
side. More details on the MEC configuration will be presented in D4.2 [14] - although the same
trusted computing principles apply as for the services deployed within a Vehicle with the core
differentiating factor been on the type of trustworthiness evidence monitored and used for the
trust assessment of the two types of operational environments. The following paragraphs analyse
the functionalities of the TEE-GSE components (refer also to Figure 3.1).

Towards this direction of continuous CCAM trust assessment, the TEE-GSE is proposed by CON-
NECT as a core building block, offering the necessary security enablers. In CONNECT architec-
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Figure 3.1: CONNECT Vehicle Security Architecture.

ture, all components that execute trust-related tasks are build on top of the TCB; thus, are able to
attest their own state (i.e., through key restriction usage policies). Nevertheless, the ones that are
considered as part of the TEE-GSE further provide support in terms of verification of attestation
evidence of other components. More information regarding the exact functionality supported by
each of the TEE-GSE components, is provided in the following paragraphs.

• Identity and Authentication Management (IAM): The IAM handles the secure on-
boarding of the devices (i.e., including ECUs and Zonal Controllers) to the in-vehicle Com-
puter. To successfully perform this task the IAM leverages nominal reference values, which
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are acquired by the Original Equipment manufacturer (OEM) and reflect the expected con-
figuration of the ECU. After the validation of the device’s state, the IAM establishes the
cryptographic keys and key restriction usage policies, acting as a key manager for the com-
ponents of the vehicle. It manages firmware and software updates as well as component
replacements, while it further maintains a list of configuration information (i.e., serial num-
bers, software versions, attestation reference values, etc.). This configuration information
is stored by the IAM as a Verifiable Credential (VC) and is shared with the Attestation and
Integrity Verification (AIV) for (run-time) verification of attestation evidence. The VC is also
sent to the Trustworthiness Claims Handler (TCH) to be used for disclosing design-time
integrity attributes, when needed as part of a trust assessment request, for all devices
comprising a service graph chain. For instance, whether secure boot mechanism is avail-
able for all in-vehicle sensors which was executed correctly during the on-boarding phase
of an ECU. The IAM component further manages the V2X communication key (i.e., PKI-
issued pseudonym credentials as defined by ETSI) for the secure and privacy-reserving
communication with other vehicles or the MEC, while it constructs the VPs containing the
harmonised attributes (i.e., anonymised attestation reports), the TAF and the Mis-behaviour
Detector (MBD) reports.

• Attestation and Integrity Verification (AIV ): The AIV manages the attestation of the de-
vices within the vehicle, including both asymmetric (A-ECUs) and symmetric capable (S-
ECU). A key distinction between the two lies in their attestation capabilities. A-ECUs are
capable of supporting local attestation, while S-ECUs requires the AIV to act as the Veri-
fier, due to limited resources. Therefore, in the local attestation case, the A-ECU provides
a signature leveraging the key restriction usage policies, and if the device’s state is correct,
then it is able to share the signature with the AIV for verification. In the remote attestation
approach, the S-ECUs transmits a quote (i.e., attestation evidence) which is verified by the
AIV , against a reference value that is stored by the IAM. The process of evidence collec-
tion, which includes attestation evidence (i.e., traces) is instantiated upon the receipt of a
Request for Evidence (RFE) message by the TAF . This evidence is consumed both by the
TAF and the TCH. The TAF leverages the attestation report to calculate the ATL, while the
TCH utilises the attestation report for the generation of the harmonised attributes, which
are later disseminated in the form of a VP to other vehicles in the vicinity of the MEC. Upon
the occurrence of attestation failures, the AIV transmits the encrypted raw evidence to the
Distributed Ledger Technology (DLT) for subsequent scrutiny by the relevant stakeholders,
such as OEM or regulatory authorities. Note that there are a number of possible mecha-
nisms for the interaction between the AIV and the TAF and these can be characterised as
pull where the TAF requests the attestation evidence that it needs, or push where the TAF
receives initial attestation evidence and is then updated if this evidence changes. Hence
the communication can be both synchronous and asynchronous.

• Trustworthiness Claims Handler (TCH): The TCH is responsible for the attribute harmon-
isation/obfuscation of of all attestation evidence received by the AIV so as to be grouped
together in trust-centric properties that enable the vehicle-wide trust assessment without
breaching the privacy of each individual device; e.g., sharing of detailed attestation infor-
mation per ECU can lead to vehicle fingerprinting which, in turn, can allow an attacker
to target known vulnerabilities of the software stack loaded to the ECU. In essence, the
harmonisation represents the same group of evidence (i.e., group-based evidence from
multiple ECUs), that can be used by a receiving entity to assess trust levels for another
entity, in a zero knowledge manner. The TCH further receives, thus verifies, the signed
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Figure 3.2: Key Restriction Usage Policy Engine.

reports (i.e., in the form of VCs) from the TAF and the MBD, which are combined with
the harmonised attributes and shared with the IAM. The output of the TCH results in the
generation of the Verifiable Presentation (VP), signed with the TCH key and to assert its
correct computation. This VP encapsulates the Trustworthiness Claims (TCs) introduced by
CONNECT [12]. and subsequently, it is incorporated into the T-CAM and T-CPM messages,
along with the kinematic information. This inclusion of the VP in CAM and CPM messages
ensures the dissemination of trust-related information within the CCAM landscape. The
TCH ’s role is equivalent on the MEC side, with the difference that the harmonisation of the
AIV ’s output is not needed to provide anonymity. Consequently, the trustworthiness claims
(i.e., including the attestation report, the TAF report and the MBD report) are signed by
the MEC-TCH and sent to the vehicles which can obtain, directly, the correct state of the
infrastructure hosting the MEC services.

3.2 CONNECT Trusted Computing Base & Building Blocks

The CONNECT TCB serves as the foundation for the execution of critical tasks as it pertains
to security and trust assessment. While functionalities related to the verification of attestation
evidence, acquired by the ECUs, are considered as part of the TEE-GSE , other equally critical
operations are supported by the CONNECT TCB.

The following paragraphs delve into the exact building blocks that form the CONNECT TCB
along with their functionalities. It is worth mentioning that the CONNECT TCB may refer both
to the vehicle computer and the ECUs. However for the case of the ECUs, there is a distinction
between different ECUs (i.e., A-ECUs, S-ECUs) based on their cryptographic capabilities. The
following descriptions are mainly focusing on the A-ECUs that have the capacity to support such
operations.

• Key Management System: It is an integral component of the CONNECT TCB, responsible
for the secure generation, storage and management of cryptographic keys. In CONNECT
the security requirements are not restricted to the creation and secure storage of the secret
cryptographic keys, but further cover the compilation of the chosen cryptographic algo-
rithms during the execution of an attestation task, as requested by the Trust Assessment
Framework (TAF ).

• Key Usage Restriction Policy Engine: Enhanced key authorization mechanisms need to
be adopted by the CONNECT TCB. More specifically, the CONNECT TCB needs to be
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configured in a way that strictly allows entity-creators or administrators to define the set
of actions that can be performed before an action is labeled as ”completed”. These ac-
tions refer to the usage of an attestation key and are called Key Restriction Usage Policies.
Within this context, assertions play a pivotal role, representing statements that must be true
for a policy to be satisfied. The Key Restriction Usage Policy Engine (KRPE), a proposed
TCB component in CONNECT , supports a collection of logical equations constructed from
these assertions. Figure 3.2 presents a logical equation, where D1,D2,D3 and Valid Policy
are the hash digests of the inputs of the logical ports. The Key Usage Restriction Policy
Engine (KRPE) processes these hash digests of inputs through logical ports to determine
the validity of a live Key Restriction Usage Policy. To seamlessly integrate the KRPE into
CONNECT ’s TCB, it is conceived as a child process spawned by the device’s Key Manager.
This arrangement ensures that the KRPE operates entirely within the Trusted World (en-
clave), upholding communication integrity between the Key Manager, which requests key
authorization, and the KRPE itself.

• (Attestation) Tracer: Another core component of CONNECT ’s TCB is the Tracer (Fig-
ure 3.3), which is responsible for continuously monitoring processes and routines that are
executed in the untrusted world of each container/device. Its primary scope is the collec-
tion of essential information for attestation methods employed in CONNECT , for ensuring
integrity. The tracer, in essence, is capturing hashes of configuration properties from safety-
critical untrusted processes and routines. These security measurements are signed by the
Tracer in the trusted world and are sent to the Key Manager to perform the required opera-
tions. The Tracer comprises two parts; the first operating in the untrusted/normal world, in-
specting safety-critical software components, while the other part runs in the trusted world,
where the Tracer’s secret key is stored. In the trusted part, i) the decoding of the raw
security measurements, ii) the calculation of the real-time configuration hash and iii) the
generation of the digital signature over the configuration hash based on the secret key, are
taking place.

It has to be noted here, that the Tracer comes with a pre-shared key pair that acts as a
Root-ID key of the Tracer. The public part of this Root-ID key is known by the Identity Au-
thentication Management (IAM) component. During the Secure Configuration of all Tracer-
enabled devices/components, the IAM sends the public key of the respective Tracer to the
Key Manager of each device/component. This process establishes a shared key bound to
the underlying hardware RoT, enhancing the security of communication and ensuring the
integrity of the Tracer’s attestation capabilities.

• Attestation Agent: It exposes the Trusted Execution Environment (TEE) Device Inter-
faces based on the TDISP protocol defined by the IETF standardization working group [25].
These interfaces are responsible for providing the run-time system measurements captur-
ing the current device’s configuration and operational state, as obtained from the Tracer,
following the TDISP (Trusted Device Interface for Security Protocols) protocol. The Attes-
tation Agent’s role in providing authentic traces and ensuring the secure communication
of these measurements is fundamental to the overall security and trustworthiness of the
system.

PU – Public Page 20



D4.1 - Conceptual Architecture of Customizable TEE [. . . ]

Untrusted Tracer

Extract Raw
Traces

Trusted Tracer

Store Tracer's
Secret Key
Decode Raw
Traces
Sign Configuration
Digest

Key Manager

GRAMINE

Untrusted safety-critical
software

(1)

(2)

(3)

(4)

(5)

Figure 3.3: CONNECT ’s Attestation Tracer (i.e., trusted vs untrusted world).

3.2.1 CONNECT Attestation Enablers

The zero-trust principle is a core characteristic of the CONNECT project and all critical compo-
nents within the framework need to be able to provide continuous verification mechanisms that
enable the validation of various attributes of an entity. This section focuses on the attestation
capabilities that are tailored to the security requirements where a prover may want to validate not
only the correct state of a node in the topology but also the correct execution of the functionality in
real-time, where possible. Given the complex and diverse environment of the CONNECT ecosys-
tem, the attestation capabilities of one powerful device — e. g., a TEE-enabled Zonal Controller
device — might be completely different compared to the ones of a resource-limited edge device -
e.g. a S-ECU. In parallel, depending on the criticality of a CCAM functionality, a prover entity (i.e.,
the AIV component) may request to take advantage of only a subset of the available attestation
capabilities of a device. The higher the required amount of trustworthiness required for a device
to participate in a function, the more attestation evidence need to be collected - both in quantity
and diversity - by a prover entity to gain a deeper level of insight for the device under investigation.

Static Attestation capabilities

The common attestation scheme for all CONNECT devices will support is static attestation. Static
Attestation is well defined in the academic literature and is used in many Remote Attestation
schemes [24] as it provides a straightforward verification over the integrity of the attested object.
Typically the algorithm computes a hash digest of the device’s memory in order to create a fin-
gerprint of the entire software stack of the device and stores it in a trusted register. The main flaw
of such a static attestation algorithm is that it does not apply to dynamic objects of the attested
software stack. Using the hash digest of such dynamic entities on a device is ineffective , be-
cause they change in unpredictable ways, making it impossible for a verifier to keep track of their
states. For example, many applications use dynamic memory allocation and library invocations,
creating code spaces that cannot be mapped statically and can create a perception to the verifier
of malicious behavior even if the application is running correctly. To handle such vulnerabilities,
CONNECT plans to leverage run-time attestation, which will be explained in the next section.
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Configuration Integrity Verification (CIV)

There are many proposals in the literature that focus on verifying the correct configuration of a
platform with related specifications providing the foundational concepts such as measured boot
and remote attestation. However, many of the existing families of attestation solutions have strong
assumptions on the verifying entity’s trustworthiness, thus not allowing for privacy-preserving
integrity correctness. Furthermore, they suffer from scalability and efficiency issues. It should be
difficult for any (possibly compromised) Verifier to infer any meaningful information on the state
or configuration of any of the devices comprising the service graph chain or wishing to enroll to a
network. In this context, it is essential to ensure not only the security of the underlying host and
loaded software processes but also their privacy and confidentiality - an attacker should not be
able to infer any information on the configuration of any of the binaries loaded in the same node.
This is identified through an oblivious challenge where an entity - such as the IAM component
- needs to attest to all of its components in a zero-touch manner without the need to reveal
specific configuration details of its software stack [21, 22]. This is a prerequisite to allow the IAM
to successfully perform the secure on-boarding of an ECU device. The trust assumptions and
the security requirements that enable the CIV to be launched for a particular ECU device are
presented in tables 6.6 and 6.7 respectively. The complete process of the secure enrollment of
an ECU is captured in the User Story V.

Control-Flow Attestation (CFA)

A core limitation of CIV-based solutions is that they do not ensure the integrity of the software’s
execution during run-time and, therefore, cannot capture attacks that target the program’s con-
trol flow. These types of attacks are considered the most devastating since they try to exploit
memory-related and data related vulnerabilities for altering the execution path of the underlying
system processes. Such vulnerabilities are able to bypass the security offered by static attes-
tation techniques since the measurement of a binary can remain unchanged even though the
software’s behavior has been altered. To address this issue, advanced dynamic control-flow at-
testation solutions propose capturing the software throughout its execution in order to identify
whether it is running as expected by verifying the integrity of the entire control flow [19, 32]. To
address scalability and performance issues we should carefully identify the parts of the software
base that are essential to be attested to. We do not need the attestation of the entire application
or device but only the execution properties of the security sensitive functionalities running. The
identification of which functionalities should be monitored is implementation dependent and de-
picted in the deployed attestation policies. The aim of this procedure is to check both behavioral
properties and low-level concrete properties about the entity’s configuration and execution, such
as the current firmware version it is running, the version of its configuration file or presence of
certain hardware properties, integrity of sensor measurements, execution paths to specific mem-
ory regions, ports and network interfaces, etc. To enable a run-time attestation process like CFA,
Tables 5.7 and 5.8 summarize the set of assumptions and requirements that are needed with
respect to the characteristics of the tracer software that is responsible for collecting the run-time
traces of the application under investigation. User story VII describes the need for collecting
(run-time) attestation evidence from the vehicle devices.
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Verifiable Policy Enforcer (VPE)

As aforementioned, the Identity Authentication Management component handles the Secure On-
boarding of all the devices of the in-vehicle topology, setting the appropriate key restriction usage
policies for each TEE-enabled device. In CONNECT , we differentiate the between two types of
key restriction usage policies: static and dynamic.

• Static policies: These cover the design space, encompassing system properties that typ-
ically remain unchanged over time. Examples of such properties are secure boot identity,
firmware version, and the configuration of the software that instantiates the CONNECT ’s
TCB. Frequent modifications in these properties could result in a modification of the device’s
state, hence safeguarding against frequent alterations is critical. CONNECT opts to allo-
cate these properties to the constant memory space of the device’s TCB. This placement
ensures that static policies cannot be changed without disrupting the normal operation of
the underlying TCB, mandating a device reboot to implement state changes.

• Dynamic policies: These capture the full spectrum of the design space, and include sys-
tem properties that may change frequently during the operational lifecycle of the device.
These policies depict the level of trust in the correctness of the operational state of a device
and can be attested utilising various attestation enablers, such as Configuration Integrity
Verification (CIV) and Control-Flow Attestation (as mentioned in subsections 3.2.1, and
3.2.1).

In the context of CONNECT , this distinction is crucial to provide trusted software updates. When
a device undergoes a software update, it necessitates a corresponding key restriction usage
policy update. This introduces challenges regarding the auditability of the updated device, as we
need to ensure that an old policy is no longer in use. To address these concerns, CONNECT
introduces a new mechanism referred to as Verifiable Policy Enforcer (VPE). The VPE consists
of a key bound with the issued static policy and a set of assertions, that will attest the software
stack of the TCB that is running in the untrusted/normal world. Operating exclusively within the
Trusted world, the VPE assumes the critical role of auditing the key restriction usage policy bound
to the attestation key of the device. Notably, all attestation keys are bound with dynamically issued
policies, representing the updatable software stack.

Swarm Attestation and Composable Attestation

As an alternative to the attestation of a single device, CONNECT also considers the parallel at-
testation of a swarm of devices featuring the same processes to be verified. The ultimate goal
of the swarm attestation schemes is to provide scalable solutions that verify the trustworthiness
of a large-scale network in a more efficient way than attesting devices individually. The existing
swarm remote attestation protocols differ from each other from various design parameters such
as network topology, adversary model, attested memory regions, verification of exchanged com-
munication data, number of verifiers, etc. For instance, consider the case of the AIV wanting
to attest all of the A-ECU devices within the same vehicle coming from a single OEM. Instead
of initiating remote attestation processes with each one of the deployed edge devices, a single
process can be triggered for attesting the same properties of all devices in a privacy-preserving
manner.

PU – Public Page 23



D4.1 - Conceptual Architecture of Customizable TEE [. . . ]

One important limitation of swarm attestation techniques is that they focus on attesting to a partic-
ular trust property within a designated network. However, depending on the request for evidence
sent by the TAF to the AIV component, it is possible that multiple trust properties are required
to be assessed for a set of devices. This leads to the exploration of Composable Attestation
schemes, an important aspect of CONNECT which enable the collection of multiple attestation
results for subsets of a swarm of devices in an efficient and scalable manner.

Direct Anonymous Attestation (DAA)

As mentioned in In CONNECTdeliverable D5.1, CONNECT envisions to use a newly developed
variant of Direct Anonymous Attestation (DAA) scheme [28, 3], which scopes to enhance the pri-
vacy guarantees of complex ecosystems such as CONNECT ’s. The goal of the DAA scheme
is to shift trust assurance from the infrastructure to each vehicle, thus creating a decentralized
approach in the trustworthiness establishment process, in a privacy preserving manner. To this
end, DAA aims to provide authentication of data in terms of their origin, meaning that a vehicle’s
component should be able to provide verifiable evidence that it represents a valid and enrolled
computer, while simultaneously ensuring that this evidence cannot be linked to the vehicle’s pri-
vacy critical information, such as vehicle’s location or other attributes that can lead to the vehicles
fingerprinting. Due to the privacy preserving nature of the DAA, we consider it as a suitable can-
didate for Story-X, as the TCH wishes to create an anonymous signature over the harmonized
attributes of the vehicle.

Link Tokens

Expanding our research for suitable attestation schemes for CONNECT , another important re-
quirement that was considered was the interplay between the provision of verified attestation
results in a zero-knowledge manner vs. the possibility to trace back to the origin of a failed
attestation result. This is rather important as a failed attestation process in an indication of risk
which might require the deployment and enforcement of the appropriate set of mitigation strate-
gies. For instance, in CONNECT , the detailed evidence that led to a failed attestation result are
securely recorded on the Blockchain infrastructure so that the OEM/Security Administrator can
further process them and identify the exact point of failure. In the case of zero-day vulnerabilities
this, will allow the CONNECT Risk Assessment engine to produce a new risk graph for the entire
CCAM continuum and provide an updated version of the graph (with the risk quantification of
all identified vulnerabilities) to the CONNECT Trust Management Framework for calculating the
new Required Trust Level (RTL) that needs to be exhibited by an entity to be characterized as
trustworthy (see D2.1 [13] for more details). This RTL will be deployed (together with a possible
update of the respective trust model includng the type of attestation evidence to be monitored) to
all Trust Assessment agents against which the current trust level will be compared.

In this context, CONNECT will add a traceability requirement to the DAA scheme to be lever-
aged [8] to obtain a novel Traceable DAA protocol based on the use of link tokens for the internal
Schnorr signatures. More specifically, Schnorr signatures provide a secure and efficient way of
proving possession of certain information without revealing the actual data. As will be detailed in
Stories XI and XII, CONNECT ’s components AIV , TAF and MBD will be providing their output
(Trust Opinion and Misbehavior Report, respectively) through (anonymized) Verifiable Credential
(VCs) structures, in order for both the TCH but also a CCAM message recipient to be able to
verify the included attributes without been able to extract any information about the identity of
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the signature provided. In this context, Schnorr signatures can be used to attest to the validity
of the credential without revealing the actual details. The CONNECT components could sign a
message containing the relevant information with their private key, which of course is bound with
a key restriction usage policy dictating the correct configuration of this component and others
could verify the signature, not by using the associated public key, but by using bi-linear pairings
over the public key of the credential issuer, which is a Trusted Third Party.

In order to be able to trace back to the identity of an AIV component, that possibly produced
failed attestation results (based on the evidence it received from one of the in-vehicle sensors),
the signatures will also be linked to a tracing key (of an authenticated entity (e.g., OEM) that
is authorized to trace back a failed attestation result) that allows the de-anonymization of the
signature. This will allow the tracing back of a VC to its origin (i.e., AIV) which will then be able to
map to the in-vehicle sensor that provided the evidence that produced a failed attestation result.
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Figure 3.4: CONNECT Vehicle Information Flows.
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3.3 CONNECT Key Management

The architecture of CONNECT is depicted in Figure 3.4, providing a comprehensive overview of
the components within the vehicle, differentiating the in-vehicle computer with the ECUs, while
illustrating various information flows. This section delves into the dedicated functions of each
component within the vehicle, emphasizing their role in generating attestation evidence. A de-
tailed exploration of the information flows is presented in Section 3.4.

The vehicle computer is in essence a system of systems. The vehicle computer in the CONNECT
framework possesses its dedicated RoT and TCB, enabling it to conduct local attestation. While
the in-vehicle computer supports local attestation, all software components used CONNECT for
trustworthiness assessments further provide their own attestation evidence (i.e., TAF, MD). It shall
be noted that the CONNECT TCB components performing trust-related tasks, are all executed
within secure containers.

For the ECUs in the vehicle there needs be verifiable evidence that they are correctly configured,
that they are using the appropriate keys and that the software being used has not been tampered
with. The IAM manages the configuration and use of keys, while the devices themselves need to
provide attestation evidence to confirm the status of their software and where possible to provide
run-time attestation evidence as well.

This section builds on the description in Deliverable D2.1 of the keys that will be used in a CON-
NECT vehicle. While giving more information about the keys, details of the protocols that will be
used will be given in Deliverable D4.2. First of all there are some general requirements:

• All processing should be as efficient as possible and meet the timing constraints of the
applications being supported.

• The source and processing of data should be guaranteed – it should be possible to know
that the communication of data was handled by trustworthy entities in the system and further
that any processing was carried out by authorised entities.

• All communications between entities (devices, containers and applications) should be in-
tegrity checked and where appropriate maintain confidentiality.

• All communications outside of the vehicle should protect the privacy of that vehicle.

The keys used in the CONNECT system are essential to enable these requirements to be met.

3.3.1 ECU keys

As mentioned in the previous section, the ECUs provide verifiable evidence regarding the correct-
ness of their configuration. Nevertheless, the different types of ECU supported by CONNECT
have different cryptographic capabilities. Note that despite the diverge capabilities, ideally all
types of ECUs should possess a RoT providing the basic functionalities listed in Deliverable 2.1,
Section 8.1.5. Hence, all ECUs within the vehicle will support a TCB and maintain their dedicated
local key managers, responsible for securely storing the necessary cryptographic keys. These
keys managers, where applicable implement key restriction policies to govern the use of keys.
Note that N-ECUs have no security features at all. In these (limited) cases, trust assessments
are adjusted to consider this absence in the overall evaluation. The remaining ECUs fall into
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Figure 3.5: CONNECT ECU keys.

two categories: those capable of both asymmetric and symmetric cryptography (A-ECUs) and
lower-powered devices limited to symmetric cryptography (S-ECUs).

A-ECU A-ECUs will have a RoT based upon a TEE . For these ECUs to enable the CONNECT
services, the TCB should include the CPU, the memory, the firmware, the operating system
and a Key Manager that will support the use of key usage restriction policies.

S-ECU S-ECUs, can only support symmetric cryptography. In addition, the RoT is not provided
by a TEE , but (where possible) by a Hardware Security Module (HSM). These can provide
Key Management capabilities, but without any key usage restriction policies. In addition,
because a TEE is not an option there will also not be a tracer.

While some form of hardware support is a key requirement for CONNECT this may not
always be practicable so there might be some S-ECUs that do not possess any type of
hardware support, this will necessarily be reflected in their treatment by the TAF.

Both types require keys that support very similar sets of requirements, but the details of how they
are instantiated and used will be different for A-ECUs and S-ECUs (see Figure 3.5). The sets of
keys required are:
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1. Keys used to ensure the integrity of communication between the ECU and its Zonal
Controller. For an S-ECU this will be achieved using a MAC (e.g. HMAC) with a pre-shared
key. For an A-ECU the data will be signed with an asymmetric key for which a certificate is
provided to the zonal controller. Alternatively the two asymmetric ECUs could first use their
asymmetric keys to establish a shared symmetric key and then use it to compute MACs.

2. Keys used for reporting attestation evidence shared with the AIV component in the
vehicle computer. For an S-ECU this will be achieved by sending the attestation evidence
to the AIV protected by using a MAC (e.g. HMAC) with a shared key. The AIV will need to
obtain the reference values from the IAM to check whether the attestation succeeded. For
an A-ECU the attestation evidence will be signed using an asymmetric key for which the
AIV has the certificate. In this case a key restriction policy will be used to ensure that the
attestation evidence can only be signed if the attestation succeeds, so if the AIV receives
a correctly signed set of attestation evidence it knows that the attestation succeeded.

3. Keys used for ensuring the provenance of data exchanged between the ECU and the
entities that process, or provide it. For example, a device controlling the accelerator
needs to be sure that the commands it receives came from the correct source. For an
S-ECU the data will be encrypted using a key that is only shared with those entities that
are allowed to process, or provide it. For an A-ECU the data will also be encrypted, but
the symmetric key to be used can be generated using a KEM/DEM protocol. In both cases
AES can be used with an appropriate mode (the GCM mode is a good choice as it provides
authenticated encryption).

4. Keys used to encrypt the data from an ECU to ensure that only allowed applications
can process that data. The options here are the same as for the previous item.

3.3.2 Zonal Controller Keys

The Zonal Controller plays a crucial role in the secure communication within the vehicle network.
It requires keys to protect the integrity of communication with its ECUs and the vehicle computer.
Additionally, the Zonal Controller requires a key for its own attestation process. The specific keys
used for communication with ECUs are determined based on the capabilities of each individual
ECU, as discussed previously. Essentially functioning as an asymmetric cryptography-capable
electronic control unit (A-ECU), the Zonal Controller follows key options similar to those outlined
for this category. In the context of a federated TAF , further keys may also be required, this should
be borne in mind, but can be left for the moment.

3.3.3 Vehicle Computer Keys

The vehicle computer is, in essence, a “Systems-of-Systems”; hence, it possess its dedicated
RoT and TCB, enabling it to conduct local attestation to ensure the integrity of the underlying
firmware and its software components. The collected attestation evidence from the vehicle com-
puter is sent to the AIV . In this case, the TCB (being statically measured and verified for its
configuration integrity) will be the underlying firmware and software used to govern the correct
launch and run-time management of the different containers and applications running on the vehi-
cle. As is the case with the other in-vehicle sensors, this attestation evidence will provide another
trust source for the (MEC-instantiated) TAF towards the creation of a composite view of the trust
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state of the entire CCAM continuum. We have to note, however, that the type of attestation ev-
idence to be collected from the vehicle computer will be different focusing mainly on the
integrity and operational assurance of the computing environment where the containers
are been instantiated. The vehicle computer can be represented by a single computing device
(where multiple containerized services can be instantiated in isolated environments) or a cluster
of computing resources where each container will be mapped to its own core. In both cases,
container-centric attestation evidence mainly capture assurances on the execution environments
rather than guarantees on the correct behavior of an application which is achieved through key
restriction usage policies.

Although the in-vehicle computer supports local attestation, all software components used by
CONNECT for supporting the continuous trust assessment process further provide their own at-
testation evidence (i.e., TAF, MD). It shall be noted that the CONNECT TCB components perform-
ing trust-related tasks, are all executed within secure containers. In addition to the CONNECT
TCB, the IAM, the AIV and the TCH collectively form the TEE-GSE. These three components
are working collaboratively to attest and verify the evidence collected, not solely from the ve-
hicle computer, but also from other in-vehicle devices (i.e., ECUs), forming a distributed RoT .
The other devices in the vehicle further provide trustworthiness evidence (usually based upon
attestation), hence possess their own RoTs and TCBs. This distributed RoT provides storage,
measurement and reporting for the vehicle computer. Storage capabilities in terms of (failed)
attestation evidence is supplemented by the DLT . The following paragraphs analyse the different
applications running on the vehicle computer.

Containers: Many of the components of the CONNECT system will be running inside contain-
ers. The different containers will need to provide attestation evidence to the AIV , although those
that use Gramine inside may make use of Gramine’s built-in attestation capabilities (see Chap-
ter 5). Asymmetric attestation keys will be required regardless of the employed mechanism, while
the attestation evidence from the containers will be leveraged as trust sources by the TAF . The
components residing within the containers require keys and certificates to establish secure com-
munications with other components (deployed in different containers) as well as other applications
running on the vehicle computer. Note that this requirement may also extend to communication
with components in containers running at the MEC. Regardless of the specifics of each case,
during the on-boarding, the components are configured with asymmetric keys. These keys keys
can be used directly for signing or, where necessary, to generate shared encryption keys.The
next paragraphs focus on the particular requirements for the different components running on the
vehicle computer.

• Identification and Authentication Management (IAM): This component will hold the ve-
hicle master key as this is used when integrating the Zonal Controllers and ECUs into the
vehicle. It will also receive information from the OEM to use when on-boarding a device
(integration key, device ID, software versions, attestation reference values, etc). This infor-
mation will be retained and used when reporting on the devices and also when a device is
updated. It will hold certificates for the different components providing it with data so that
the authenticity of the data can be verified. It will also use (a) an asymmetric key when
signing VCs used to provide attestation reference values and configuration information to
the AIV and (b) pseudonym keys to sign VPs used for sending trustworthiness data outside
of the vehicle.

• Attestation and Integrity Verification (AIV): This component AIV will require keys, or
certificates, enabling it to verify the received attestation evidence. Once verified, the ev-
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idence will be used to generate an attestation report VC, which is shared with the TCH
and the TAF . The AIV requires an asymmetric signing key to perform this task. The AIV is
further responsible for storing the failed attestation evidence to the DLT . The failed attesta-
tion evidence is encrypted using ABE, so that strictly entities with the correct attributes can
view them and investigate the failure. Therefore, the AIV needs to generate the ABE key
to-be-used.

• Trustworthiness Claims Handler (TCH): In addition to keys or certificates for validating
communication with the TAF , AIV and IAM and the application for the CAM/CPM construc-
tion, the TCH will require a (HW-based) key for signing the harmonised attributes VC. The
harmonised attributes, including the TAF and MD reports are included in the VP, which is
sent outside the vehicle. Therefore, to preserve the privacy of the vehicle, a DAA key is
leveraged to sign the harmonised attributes VC.

• Trust Assessment Framework (TAF): The TAF will need keys or certificates for its inter-
action with AIV , the MBD and the CCAM applications that generate the Trust Assessment
Request (TAR)s. It further requires a key for the communication with the TCH and a DAA
key to sign the Trust Opinions VC that it provides to the TCH to be included in the VP to be
sent outside of the vehicle.

• Mis-behaviour Detection (MBD): The MBD requires keys for decrypting the sensor data
that it evaluates. It further necessitates keys for the dissemination of its results to the
TAF and the TCH. Additionally, to ensure anonymous signing of the misbehavior report
VC, provided by the TCH and subsequently included in the VP, that is sent outside of the
vehicle, the MBD requires a DAA key.

• CCAM Services: These services require keys to perform their designated tasks, enabling
them to process the data needed. Furthermore, these services necessitate keys for com-
municating with the TAF when making TARs.

3.4 CONNECT Vehicle Information Flows

The CONNECT information flows inside the vehicle are shown in Figure 3.4. Two separate flows
are illustrated in the figure: the red flows depict the activities performed to support and provide
(kinematic) data for the applications (i.e., the CCAM services), while those in green color capture
the interactions that take place between all CONNECT -related components for enabling both
data- and node-centric trust assessments. The figure focuses on the In-Vehicle topology. More
information regarding the MEC topology will be discussed in D4.2 [14], hence are considered out
of scope for this deliverable.

Starting with the application data flows, a request for data is sent from an application (in the
application layer) to the Facility Layer (FL) (step 1). This request is forwarded by the latter (i.e.,
the facility layer) to the Zonal controller (ZC) (step 2) and then to the ECUs which then acquire the
data (step 3). The ECUs collect data from their sensors, and send them to the Zonal controller
(ZC), which forwards it to the FL (step 4). One of the responsibilities of the FL component is to
associate (i.e., tag) the raw data coming from the sensors to the corresponding device identifiers.
Subsequently the tagged data is sent both to the MBD to be checked for discrepancies (step
5a), as well as to the application that made the request (step 5b). The application processes the
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information (step 6a) and the results are forwarded to the CAM/CPM Encoder/Serialiser, to be
sent to the MEC or other vehicles (step 6b).

Moving to the CONNECT data flows, these are related to the invocation of the trust assessment
process to the in-vehicle topology. There are various ways that such a process can be triggered.
In the scope of this deliverable we focus on the cases where an application is requesting for the
execution of a new trust assessment through the application layer (i.e., pull scenarios). However,
invocation of a new trust assessment can take place once a change in the topology is identified
(i.e., push scenarios). For instance, the AIV may detect that an attestation process has failed and
a trust assessment needs to be executed in order to re-calculate the ATL value for the affected
trust relationships.

By focusing on the pull scenario of Figure 3.1, we have an application requesting for a new trust
assessment to the TAF (step 1). The TAF requires certain evidence in order to calculate a Trust
Opinion (i.e., ATL), so it sends a RFE (Request for Evidence) to the AIV Component (step 2).
The RFE specifies which devices should provide attestation evidence and whether the resulting
attestation reports should be sent immediately, or periodically. Upon receipt of the RFE, the
AIV requests the evidence from the Zonal controller (ZC) (step 3a), which forwards the requests
to the ECUs (including both A-ECUs (step 3b) and S-ECUs (step 3c)). The Zonal controller
(ZC) collects this attestation evidence and forwards it to the AIV (step 4), that is responsible for
verifying correctness of the attested devices.

Some devices, such as the A-ECUs and Zonal controller (ZC)s, may support local attestation,
leveraging the key restriction usage policies, offered by the CONNECT TEE-GSE . For these de-
vices, the verification takes place locally, while only a signature on the nonce (e.g., attestation
challenge) is sent back to the AIV . In this case, the AIV is able to verify their state correctness
simply by validating the correctness of this digital signature (i.e., without disclosing the low-level
system traces). The devices that do not support local attestation (i.e., S-ECUs), provide their
signed attestation evidence (as quotes) to be remotely verified by the AIV , since key restriction
usage policies cannot be enforced. The AIV needs to further acquire the reference values (i.e.,
golden hashes), against which the runtime measurements will be assessed, from the IAM com-
ponent (step 5a), to act as the Verifier. The AIV generates (step 5b) and sends the attestation
results to both the TAF and the TCH (step 6). In parallel, the MBD sends a misbehavior report
VC both to the TAF and the TCH (step 7). Having all the evidence required, the TAF performs
its assessment and sends the trust opinion VC to the TCH (step 8).

The TCH is responsible for the harmonization of the received evidence. This is a crucial step
before building the final VP since the trust-related information that accompanies a CAM/CPM
message need to be provided in a privacy-preserving manner to address the risk of vehicle fin-
gerprinting. The TCH component uses the harmonized attributes to form a Trustworthiness Claim
and along with the VCs from the TAF , the MBD it constructs the TCH VP. This essentially dis-
closes those attributes needed (from all aforementioned credentials) with the necessary level of
abstraction so as to enable vehicle-wide trust assessment (from the receiving CCAM actor) while
not impeding on tne privacy profile of the vehicle. The TCH VP is sent to the IAM (step 10),
which signs the VP using a PKI-based pseudonym (step 11) and sends it to the CAM/CPM En-
coder/Serialiser (step 12). The last step before sending this VP to the MEC or other vehicles, is
to serialise the T-CAM/T-CPM message (step 13).
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3.5 CONNECT TEE Design Choice

Today, vehicles are increasingly digital and many functionalities are implemented by a large num-
ber of diverse ECUs. Due to the increasing focus on software and AI-based algorithms, the
required compute power in the vehicle is rapidly increasing. In particular for autonomous driving,
the vehicle functionality requires many powerful ECUs. As a consequence, we see a clear trend
towards more powerful (central) compute clusters in the vehicle. To address this need in a cost
efficient way, the industry trends from small fixed-function ECUs towards larger general-purpose
clusters. These larger clusters are often services by deploying commercial off-the-shelf CPUs. To
address this trend, we decided to test and validate the commercially available Intel SGX Trusted
Execution Environment that is provided and supported by beneficiary Intel.

As outlined in Section 2.3.1, Intel SGX allows to execute largely unchanged Linux applications
within a hardware-protected TEE, Due to its broad availability in commercial CPUs, is is supported
by a wide range of tools and example applications: While we selected Intel SGX, it is important
to note that this does not constitute a lock-in to this technology.

While we will prototype and conduct research using this technology, the resulting architecture is
largely TEE agnostic: Our architecture will require that security-critical parts are clearly separated
from other parts. We then require that the critical parts can be executed within and protected by
a TEE. Since we prototype the protected parts as Linux applications, any TEE that can protect
Linux-style applications should be rapidly usable to replace Intel SGX if desired. Furthermore, by
refactoring / recompiling the applications for other run-time environments, they should be portable
to any other sufficiently powerful TEE.

3.5.1 The Gramine Library OS for Intel SGX

To simplify the burden on an individual developer when using the Intel SGX CPU feature, the
Open Source Community has developed multiple frameworks that simplify the life of a developer
that intends to design TEE-protected applications. Examples include the Gramine LibOS project
[37, 38], Haven [6], SCONE [5], Occlum [35] or Panoply [36]. These frameworks put the whole
application inside the SGX enclave. Only a small chunk of original logic stays untrusted, namely,
input/output (I/O) functionality such as networking, file system, other system calls, and so on.

By putting the whole application inside the enclave, there is no need to perform any partitioning.
Instead, Library OS frameworks like Gramine automatically generate ECALL/OCALL interfaces
to execute only the specific logic required in the untrusted host: system calls, CPUID instructions,
etc. Thus, the untrusted code of a Library OS only deals with untrusted input/output. At startup,
the Library OS framework loads the application enclave and immediately switches to enclave
mode. Thus, the user application executes inside the enclave almost all of the time, except
for I/O requests. At run-time, the Library OS framework only performs this minimal I/O so that
the enclave can communicate with the outside world through the network, file system interface,
or other system calls. For the CONNECT Project we decided to use and extend the Gramine
Library OS that is maintained by Intel, one of our Beneficiaries. Gramine allows to seamlessly
port Linux applications that implement security-critical services into a Intel-SGX-protected TEE.

Gramine is a TEE run-time to run unmodified Linux applications on different platforms in different
environments [37, 38]. For example, Gramine can take a Redis database Linux-x86-64 based
binary and its dependent libraries, without modification or recompilation, and let it run in a TEE
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that is protected by Intel SGX. The currently available and most widely used configuration is
running applications inside an Intel SGX enclave on top of the untrusted Linux kernel.

When using InteL SGX, software developers can port their applications to Intel SGX by putting
only the security-critical parts of the application into the Intel SGX enclave and leaving the non-
critical parts outside of the enclave. Several development kits can help ease the task of writing
such code; Intel SGX SDK and Open Enclave SDK are two prominent examples. However, in
many real-world scenarios, it is infeasible to write a new application from scratch or to port an
existing application manually.

Gramine can help ease this porting burden for developers: Gramine supports the “lift and shift”
paradigm for Linux applications, where the whole application is secured in a “push-button” ap-
proach, without source-code modification or recompilation. Instead of manually selecting a
security-critical part of the application, users can take the whole original application and run it
completely inside the Intel SGX enclave with the help of Gramine.

Gramine not only runs Linux applications out of the box, but also provides several tools and
infrastructure components for developing end-to-end protected solutions with Intel SGX:
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Chapter 4

User Stories for Security-Critical Features
of CONNECT

Chapter 4 specifies important required behaviors of our architecture using so-called ”user stories”.
They document the requirements of different roles / user groups of the CONNECT project. Each
user story outlines well-defined usages by given user roles / groups together with their security
and functional requirements. This serves as a high-level description of requirements that need to
be satisfied by the services and architecture that is provided by CONNECT .

4.1 Introduction to the CONNECT User Stories

The user stories outlined here are designed to illustrate the CONNECT functionalities that will be
used to provide trustworthiness evidence, both for the TAF and the TCH and how this evidence is
used to provide VCs and VPs that will be sent outside of the vehicle while maintaining its privacy.

The user stories are divided into: (a) general user stories – those that are agnostic to the type of
hardware used, and (b) implementation based user stories – those that are specific to the hard-
ware that CONNECT will use when implementing these systems, i.e. Intel-SGX and Gramine
(starting with Story-XVI). Figure 4.1 shows a simplified diagram of the devices in the vehicle and
the software components in the main Vehicle Computer. Note that in the underlying design of
the CONNECT system each of the TEE-guard components - namely the IAM, the AIV and the
TCH - will run in an isolated environment with its own TCB. However, for implementation using
Gramine (described in Chapter 5) we will have the entire TEE-guard running in a single secure
container, having the TCH and IAM components running as children Intel SGX is a TEE provided
by Intel CPUs that allows to execute a user-space process within a hardware-protected execution
environment that is called enclaves (Enclaves) of the AIV Enclave, as depicted in Figure 4.2.
For better clarity, we have opted to showcase the positioning and interactions between all com-
ponents, comprising the CONNECT TEE-GSE, with a different level of abstraction: Figure 4.1
highlights the overarching architecture of the In-Vehicle Manager depicting the interactions be-
tween the CONNECT security components that take place over different phases of the entire
lifecycle of the vehicle mapped to the user stories described in the following sections. Figure 4.2
captures a more detailed version of this in-vehicle security architecture showcasing also the exact
instantiation of all components based on the use of the Grammine TEE technology.

We start with the general user stories. These are further sub-divided into: (a) those that are used
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Figure 4.1: CONNECT CONNECT In-Vehicle Logical Architecture capturing all func-
tional specifications depicted through the described user stories.

to illustrate how a CONNECT vehicle is setup and configured, (b) those that show how, once the
CONNECT vehicle’s systems are up and running, evidence of the trustworthiness of data and
applications is collected, assessed and communicated and (c) those that illustrate how, when the
trust level in an ECU falls, critical applications running on that device can be migrated to another
(more trustworthy) ECU.

General pre-requisite - Devices within the vehicle are all clearly identified and can be routinely
addressed.

4.2 User Stories for Preparing the Vehicle

To enable the CONNECT security architecture and services, the vehicle needs to be set up during
manufacturing and assembly. The following user stories describe key tasks that are required
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Figure 4.2: CONNECT CONNECT In-Vehicle Implementation Architecture depicting
detailed positioning and interactions between the CONNECT TEE-GSE components.
Detailed version of Figure 4.1 on page 35.

during this phase. The outcome is a vehicle where all keys and software are installed and that is
now ready for operation.

Story-I: Configure a device ready for installation into the vehicle.

Objective: To configure a device ready for installation into the vehicle.

Motivation: Before installation into the vehicle all devices need to be configured with the crypto-
graphic keys that they need and the correct software installed. This will include application-
specific keys as needed by the CCAM applications and CONNECT keys used to provide
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evidence in a trustworthy manner. This is the first stage in this process and is carried out
by the Tier 1 Supplier supplier.

Requirements: The device should have a unique identity and an associated key pre-
programmed by the (Tier 2 Supplier ) device manufacturer. The identity and associated
key pair are provided to the OEM when the device is supplied.

Story-II: Install and set-up the vehicle computer’s IAM.

Objective: To install IAM software on the vehicle computer and install the vehicle computer’s
long-term master key (VKM).

Motivation: The IAM is one of the TEE-GSE components and runs protected by a TEE , It man-
ages the installation and update of the different software components running on the vehicle
computer and stores the VCs containing their configuration and attestation information. It
also manages the CONNECT range of keys which are used in the vehicle for attestation
and to protect communication between its various components. These keys are derived
from the vehicle’s master key. Installation and setting up the IAM and provision of the VKM
is carried out by the OEM as the first stage in configuring the vehicle computer and setting
up its software.

Requirements: The vehicle computer (a powerful A-ECU) has already been configured by Tier
1 (Story-I).

Story-III: Install the vehicle computer’s software.

Objective: To install and configure the different software components that will run on the vehicle
computer.

Motivation There will be a number of software components running on the vehicle. These will
include specific CONNECT containers (such as the AIV and TAF ) and CCAM applica-
tions, such as Co-operative Adaptive Cruise Control (C-ACC) and Intersection Movement
Assistance (IMA), running outside of a TEE (see Figure 4.1). They will all need to be down-
loaded, verified and configured with the keys that they need (Story-IV). The configuration
and attestation reference values will be provided by the OEM, or software supplier, in a
VC. The IAM will store the VC and use the information that it contains to confirm that the
software has not been modified and has the expected version number. Provided that these
tests pass successfully, the IAM considers the software component as securely enrolled
and exchange all application-specific and CONNECT keys.

Requirements The IAM will need to be installed and configured beforehand. In addition, the
IAM will control this process and also manage any updates as they are needed (Story-II).
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Story-IV: Configure the necessary keys for the different vehicle computer’s
software components.

Objective: To provide the vehicle computer’s software components with the keys that they re-
quire.

Motivation: Each of the vehicle computer’s software components needs to be able to protect
its data and where necessary to sign that data to prove its provenance. So, for example,
the TCH will need to be able to verify the signatures on the VCs that it receives from other
components and to generate and sign VCs, or VPs, that it uses to send data to the other
components. For the TCH some data will be sent internally and can be ‘straighforwardly’
signed (e.g., using ECDSA) while other VCs will need to be anonymously signed. In order
to be able to anonymously sign the VC the TCH will need to obtain a credential from a
Privacy CA for its key. This will involve establishing a secure channel to the Privacy CA and
running the protocol that is used to issue credentials (see Deliverable D4.2 for details).

Requirements Initially, the software should have been downloaded and verified. Part of this con-
figuration might be done as the software is installed (Story-III) while some may be delayed
until the ECUs are also on-boarded and configured (those for securely communicating with
the ECUs). Where necessary the software component should be able to establish a se-
cure connection to a Privacy CA for the issue of credentials that allow the component to
anonymously sign its VCs.

Story-V: Secure on-boarding of an ECU into the vehicle.

Objective: As an OEM I want to enable the authentication and secure on-boarding of an ECU
into the vehicle and setup the necessary keys (both the CONNECT security-related keys
and the application-related keys)

Motivation: All ECUs need to be configured with the software and cryptographic keys that they
need (see Section 3.3). The details will vary depending on the type of ECU and how they
will be used. A detailed description for each ECU and application will be given in Deliverable
D4.2.

Requirements: The device has already been configured by Tier 1 (Story-I) and the vehicle
computer’s TEE-GSE has already been configured (Story-III).

Story-VI: Equipping the IAM with pseudonyms.

Objective: To obtain a set of pseudonyms from the Public Key Infrastructure (PKI) and install
them into the IAM.
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Motivation: A mechanism for protecting the privacy of the vehicle has been standardised by Eu-
ropean Telecommunications Standards Institute (ETSI): messages that are sent outside of
the vehicle (for example CPM messages) should be signed using pseudonym keys. These
pseudonyms are obtained by connecting to the PKI and are then stored in the IAM for later
use. Note: the IAM will ensure that the pseudonyms can only be used under the condition
that the vehicle is attested to be in a good state – this will provide an efficient revocation
mechanism for the pseudonym keys.

Requirements: The IAM has already been configured by the OEM (Story-II).

4.3 User Stories for Assessing Trustworthiness of Vehicle or
Services

An important functionality of the CONNECT architecture is to establish a Trust relationship
between different CCAM actors through verifying the Trustworthiness Claims included in the
CAM/CPM messages. Apart from establishing Trust relationships between different vehicles,
CONNECT scopes to allow authorized stakeholders to monitor the trustworthiness levels of Trust
Relationships between devices in the in-vehicle topology, thought storing evidences in the DLT.
The following user stories specify the desired functionalities to allow this trust assessment.

Story-VII: Obtaining and verifying trustworthiness (attestation) evidence
from the Vehicle’s devices.

Objective: For the AIV component to obtain and verify (attestation) evidence, that was collected
from the execution of an attestation task dictated by a Request For Evidence (RFE) in order
for the AIV to report to the TAF , the TCH and, if it is needed, the DLT (see Story-IX), on
the devices (zonal controllers and the ECUs) that are included in the attestation request.
Storing data in the DLT occurs only in case of a failed attestation event.

Motivation: In order to create a Trust Opinion (TO) for either a data item or a collection of nodes
of the in-vehicle topology, the TAF needs an attestation report over the attestation/trustwor-
thiness evidence from the devices providing that data. Similarly the TCH consumes the
attestation report comprising the verification status of various system properties, depicting
the Trust level of the attested system. More specifically, the TCH engages its harmoniza-
tion mechanisms, in order to create a harmonization/abstraction of the attributes of the
engaged devices and eventually create a VP of such a harmonization. The components
that are involved need to acquire verifiable attestation evidences from the attestation agent
of each component. In CONNECT , as it was thoroughly described in deliverables D2.1 [13]
and D5.1 [12], a CCAM application/service requests the calculation of a Trust assessment
by the Trust Assessment Framework over a specific service for which a Trust model is al-
ready being deployed. This functionality is crucial to CONNECT , as it scopes to provide
Trust quantification for a vehicle, establishing Trust relationships and eventually CCAM-wide
Trust quantification. These quantification is provided by establishing a Trust chain between
CONNECT components, from the TAF to the AIV and eventually to the TCH. In order for
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this Trust chain to be feasible on a zero Trust model, the Trustworthiness/attestation evi-
dence should be constructed in a verifiable manner by all engaged components, in order
for the system to be able to assess the validity of the provided claims. Moreover, as de-
scribed in deliverable D5.1 [12], we need to employ privacy enhancing technologies for the
creation of the verifiable evidence. Thus, CONNECT ensures that each VP will not breech
the privacy of a vehicle but it will allow authorized entities to trace back to the failed attes-
tation evidence producer. This requires the use of advanced crypto primitives like the DAA
which will be elaborated in D4.2 [14].

Requirements: For this user story to be feasible, all capable devices (A-ECUs and S-ECUs)
must have successfully completed the Secure On Boarding (section 6.8.1), in order to set
up their secret keys and the appropriate key restriction usage policies. Furthermore, the
AIV has to get a list of devices to be attested. This information comes from the TAF and is
part of the RFE. Additionally, the AIV needs to have information about how the attestation
evidence should be verified. Thus, the AIV must have acquired from the IAM a mapping of
all the possible attested devices to their reference values. For that purpose the AIV must
be able to securely connect to the TCB exposed interfaces of each device so as to be able
to collect the appropriate type of attestation evidence required.

Story-VIII:Trusting Verifiable Presentations.

Objective: VPs that a vehicle receives (which contains the VPs, for harmonised attributes, the
TAF ’s report (ATL) and the MBD Misbehaviour Report) should contain the cryptographic
guarantees of the necessary information depicting the level of trust of the vehicle sending
the VP, in order for the third party receiving it (either another vehicle, or the MEC, or some
other trusted third party) to be able to verify it.

Motivation: Depending on pre-defined policies, vehicles send CAM/CPM messages, that will
also include a VP reporting on the trustworthiness of the vehicle sending the data. Such
a construction is called T-CAM/T-CPM, as it’s the concatenation of a plain CAM/CPM mes-
sage and TCs. This VP will contain information extracted from the VCs provided by the
TAF (for its trust opinion), the MBD (for its misbehaviour report) and the TCH (for the har-
monised attributes). From these, the VP, selectively discloses the information needed for
the T-CAM/T-CPM consumer to be able to create its local trust opinion on the data ori-
gin without any privacy implications/breaches. Thus, each VP will be signed anonymously
including a linkability token, which eventually is going to be signed by the IAM using a
pseudonym key. As aforementioned, CONNECT is built on top of a zero Trust model. That
being said, each CONNECT component that contributes to the creation of the Verifiable
Presentation is not deemed by default Trusted. Thus, CONNECT components that are
hosted by resource-capable devices, have to activate the attestation enablers of their un-
derlying TCB to check whether or not they are not behaving maliciously. This is possible
through the newly developed key restriction usage policies, as described in section 3.2.
As a result each component is providing the necessary verifiable evidence, created from
the component’s unique secret key.The calculated VPs are depicting the Trust level of the
vehicle that sent them and will be used from another vehicle or the MEC to formulate their
own Trust Opinion from the received VP. As the VPs are the representation of a vehicle in
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the formulation of a Trust graph, the verifier needs to have strong mathematical proofs (VP
verification) in order to Trust the VP producer.

Requirements: Each component of the TEE-GSE that will need to provide an anonymous sig-
nature, such as the Trust Assessment Framework (TAF ), the Trustworthiness Claims Han-
dler (TCH) and the Misbehavior Detection component (MBD), will have to be successfully
securely enrolled. More specifically, each of these components have to set up its key re-
striction usage policy correctly and establish a trusted and authenticated communication
channel to a VC issuer, in order to obtain the necessary verifiable credential that represent
their hardware built-in attributes. The IAM will need to have obtained a pseudonym key
from the PKI (Story-VI).

Story-IX: A vehicle stores the trustworthiness evidence of a failed attesta-
tion task (as part of a Request for Evidence from the TAF) to the Distributed
Ledger (DLT).

Objective: The Attestation Integrity Verification (AIV ) component, should store failed attestation
evidence onto the DLT . Storing failed attestation evidence in the distributed ledger enables
the OEM or any other Security administrator to process them, in order to pinpoint the vul-
nerability that was exploited and as a result identify and resolve zero-day vulnerabilities.
This enables the re-calculation of the Required Trust Level of affected Trust Relationships
and to keep track of the history of the trust state of a device like a reputation system to be
potentially used by the federated TAF.

Motivation: When an attestation task fails, there is strong indication of risk regarding the attested
device. For example, the integrity of the device does not meet the expected requirements.
In this case, the failed attestation evidence is stored onto the Blockchain infrastructure
so that it can be accessed later by the OEM or regulatory authorities for analysis of the
compromised device. Henceforth, such authorities can then take actions on the analyzed
malicious behavior, by either patching the existing software to fix found vulnerabilities, to
withdraw faulty hardware that leads to malicious behavior, or updating the RTL in collabo-
ration with the Trust Management Framework running on the cloud. Apart from the actions
mentioned above, reporting on failed attestation tasks is an integral part of revocation and
migration mechanisms (see Story-XIV). Attestation evidence for a device that is assessed
to have failed the attestation test(s) (static and, where appropriate runtime) will be stored
off-line with a pointer stored on the DLT. The data to be stored will be encrypted using ABE
to restrict access to authorised parties (those with the correct attributes), such as the OEM
or regulatory authorities.

Requirements: The AIV needs to be configured to have access to the distributed ledger. More
specifically the Attestation Integrity Verification component needs to be equipped with the
appropriate VCs, in order to be granted access to the DLT through ABAC. Additionally, the
AIV has to be configured to perform Attribute Based Encryption. To make this feasible in
the context of CONNECT use cases, during the secure on-boarding phase the IAM issues
a policy for each pre-defined Trust model, including the attributes under which ABE is going
to be performed.
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4.3.1 Protecting Privacy during Trust Evaluations

While evaluating the trustworthiness of a T-CAM/T-CPM provider is important, disclosing all de-
tails of a vehicle is privacy invasive since it allows the verifier to identify a specific vehicle. As
described in deliverable D5.1 [12], apart from the well studied cryprographic properties such as
anonymity, unlinkability, untraceability and unobservability that are achieved through the tradi-
tional PKI-issued anonymous credentials, we are interested in the appropriate level of obfus-
cations regarding the exchanged trust-related information. This enables the continuous Trust
assessment, without exposing sensitive information about the vehicle’s architecture that can pos-
sible lead to numerous attacks.

Story-X: As the TCH I want to self-issue a valid VP, comprising trustworthi-
ness (attestation) evidence adequately abstracted, so as to allow vehicle-
wide trust appraisals by any receiving entity.

Objective: The objective of this functional specification is for the Trustworthiness Claims Handler
(TCH) to be able to provide a Verifiable Presentation (VP). This VP is the cryptographically
enhanced harmonized attributes, TAF and MBD report. More specifically, from an RFE
the TCH receives an attestation report, a TAF report and possibly the MBD report. These
information is the baseline for providing evidence on the integrity of a Trust model. As an
expansion to this, in CONNECT we want to shut down every privacy implication that may
be raised. For that purpose we employ harmonization mechanisms, in order to obfuscate
the attributes of the attested Trust model and anonymized VC for the TAF and MBD report.
Employing such advanced mechanisms, CONNECT manages to provide evidence regard-
ing the Trust level of a vehicle in a zero-knowledge manner, as the TCH is not disclosing
any information that can lead to the fingerprinting of the vehicles architecture or identity.
The harmonization mechanisms and the exact type of VCs that are going to be employed,
are going to be investigated in the deliverable D4.2 [14].

Motivation: As described in the deliverable D5.1 [12], CONNECT aims to establish Trust rela-
tionships to a CCAM ecosystem, thought attestation mechanisms, for all the participating
vehicles, while preserving all aspects of the vehicle’s privacy. The TCH receives the attes-
tation report constructed by the AIV as the result to a Request for Evidence (RFE), that
was circulated by the TAF for triggering the collection of the necessary trustworthiness
evidence. The attestation report is consisted from a Verifiable Credential signed by the
underlying hardware based key of the AIV and the attributes and system measurements
of all participated devices depicting. The attestation report is comprising a service graph
chain investigating all Trust dimensions, for all the participating devices. These attributes
goes through harmonization mechanisms to converge in to a more abstract depiction of
the devices architecture. These harmonization mechanisms, will be focusing on grouping
together the same Trust properties of the attested system, so that they can depict the same
type of Trust related information but in a more abstract way. For instance, such mechanism
could be a special type of group based signatures or threshold signature schemes. The
approach that is going to be employed eventually, will be investigated in the future. It has
to be noted here, that this harmonization has to be verified by an external entity prior to
calculating its own Trust opinion. For this purpose the harmonized attributes are used to
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calculate a Verifiable Presentation, with the TCH’s secret key, which will be anonymized so
as to preserve the privacy of the vehicle .

Requirements: For the completeness of this functional specification, the TCH needs to know
the attributes of the attested ECUs so it can perform a correct harmonization each time
a VP needs to be constructed for broadcasting to the MEC-instantiated TAF and/or the
neighbouring vehicles. Apart from the disclosed attributes, the TCH needs to have suc-
cessfully completed Secure Enrollment, in order to have its key restriction usage policy set
up correctly.

Story-XI: As the TAF I want to self-issue a valid trust opinion VC based on
the relevant trust sources.

Objective: The objective of Story-XI is for the Trust Assessment Framework (TAF) to be able
to provide anonymous and unforgeable signatures, over a calculated TAF report disclosing
the ATL of a Trust model that was attested.

Motivation: As aforementioned, a CCAM application may request from the TAF to calculate a
Trust Assessment Request over a pre-defined Trust model. With the freshly now acquired
attestation report, the Trust Assessment Framework calculates a Trust Opinion for this par-
ticular model, in order to be sent to the TCH and eventually outside of the vehicle. For this
purpose the Trust Opinion is signed with the secret key of the TAF and gets associated with
a link token to eventually construct an anonymized Verifiable Credential. By constructing
an anonymized Verifiable Credential, we enable both the verification of the relevant Trust
Opinion, and authorized entities (the link token’s issuer) to trace back to the signer’s identity.
Moreover, between the TAF and the TCH we don’t have any privacy implications, but for a
verification performed by an external entity, CONNECT needs to assure that no information
about the identity of the TAF that provided the VC. For this purpose, we need the VCs to
be anonymized, but with an accountability factor in case the TAF is acting maliciously and
necessary actions need to be made.

Requirements: For this usage story to be feasible the Trust Assessment Framework (TAF) needs
to know all the relevant trust sources. More specifically, the TAF receives a report from
the AIV component depicting all dimensions of Trust defined in deliverable D3.1 [11].The
Attestation report, includes a mapping of the trust attributes of the ECUs that provided the
attestation evidence, for the calculation of this Trust Opinion, along with a signature that
depicts that the AIV is indeed in a correct/Trusted state.Moreover, as the TAF needs to
provide its own anonymised signature, it needs to acquire its link token in order to be able
to associate it with each self issued Verifiable Credential. The link token is provided by a
Trusted Third Party (TTP), with which the TAF can establish a trusted and authenticated
channel.

Story-XII: As the MD I want to self-issue a valid misbehavior report VC for
the data that is being sent.
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Objective: The objective of Story-XII is for the Misbehavior Detection component to be able to
provide anonymous and unforgeable signatures, over a misbehavior report formed with the
data collected from the facility layer of the vehicle.

Motivation: A misbehavior report from the MBD is one of the methods used to provide trustwor-
thiness evidence over a vehicle. More specifically, based on pre-defined policies the facility
layer will request from the Misbehavior Detection component to construct a Misbehavior
Report from the evidence collected by the zonal controllers and their underlying ECUs. The
constructed Misbehavior Report is sent to the TCH and is included to a T-CPM message.
Because the Misbehavior report is shared with other components/entities, it needs to be
created in a verifiable manner. To be more precise, for the finalization of the Misbehavior
Detection report the MD calculates a digital signature over the misbehavior checks for a
particular observation and then associates the signature with a link token in order to con-
struct its verifiable credential. Moreover, as the Misbehavior Detection report is included in
a T-CPM message, a lot of privacy implications are raised, as any external entity shouldn’t
be able to extract any information about the identity of the signing MBD. To resolve this
issue, the VC provided by the Misbehavior Detection component needs to be anonymized.

Requirements: For this usage story to be feasible the Misbehavior Detection (MBD) component
needs to have a mapping of all the devices keys, that corresponds to communication in-
tegrity and data integrity. More specifically, the Misbehavior Detection component expects
encrypted CAM/CPM messages, with the keys that IAM shared during the boot up phase of
MBD, ensuring the integrity of the received data. Moreover the MD needs to provide its own
anonymised signature. That being said it has to have successfully completed the secure
enrollment phase, where a TTP has issues a link token for a specific MBD. The anonymous
signature along with the link token, are used to construct the MBD’s Verifiable Credential.

Story-XIII: Verify a trustworthiness claims VP provided in a CAM//CPM mes-
sage

Objective: As the receiver of a CAM/CPM message containing a trustworthiness claims VP I
wish to verify the integrity of the evidence that I have received.

Motivation: Trustworthiness claims VPs are included in some, or all, of the CAM/CPM messages
to provide trustworthiness claims, produced from the trustworthiness evidence collected by
the AIV , MBD, IDS and TAF . Each of the aforementioned components are contributing
using their own secret key to the Trustworthiness claims, solidifying the validity the data
that are included. These claims are eventually signed by the IAM, using a PKI pseudonym
and then is sent to all neighboring vehicles and the MEC. The contribution of all the relative
components has to be verified by the T-CAM/T-CPM message consumer, in order recreate
the Trust chain that was instantiated in the vehicle of the T-CAM/T-CPM message provider
enabling the calculation of the referral trust assessment (on the vehicle, or the MEC). It
goes without saying, that without this verification procedure the TAF cannot assess that
the T-CAM/T-CPM message provider has used the appropriate keys and was in a correct
configuration or that it matched the requirements of any other aspect of security that was
attested for this particular Trust assessment.
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Requirements: The CAM/CPM message consumer needs to check the pseudonym used to
sign the VP, so as to assure that it is indeed a PKI-issued pseudonym. Furthermore, upon
the successful verification of the pseudonym signature, T-CAM/T-CPM message consumer
needs to verify the Verifiable Presentation (VP) as well. This verification process is broken
down in two phases. The first phase should be verifying the Verifiable Presentation (VP)
as a whole. The second is initiated in case the first phase fails to be compiled successfully.
In this phase the T-CAM/T-CPM consumer tries to verify the Verifiable Credential provided
by the TAF and MBD, in order to be able to trace back to the entity that failed to sign with
its secret key. This way, due to the associated link tokens, authorized entities can extract
the identity of the component that failed to create a valid contribution for the T-CAM/T-CPM
message and act accordingly.

4.4 User Stories for Re-Establishing Trustworthiness

Due to bugs, it may happen that parts of a system are compromised. In this case, it is important
to support recovery of unaffected system parts wherever possible. One tool for this recovery is
the migration of a critical CCAM application to another ECU. The goal of this story is to salvage
the protected state of the TEE (assuming it was not compromised) and re-establish a clone of
this TEE on another ECU.

Story-XIV: Migration of a CCAM application from one ECU to another.

Objective: When the IAM is notified by the TAF of a change in the trust level of a device, hosting
a CCAM service, that puts it below the RTL, he triggers the migration of the CCAM’s service
to an ECU with the appropriate RTL.

Motivation: As in CONNECT we are moving towards zero trust architecture, we need to ensure
that even when a complete ECU no longer meets the required trust level (RTL), the system
could recover its trustworthiness level (i.e., ATL). The goal is to then migrate a critical CCAM
component/service from a degraded ECU to another ECU that is still trustworthy. As other
ECUs capable of hosting the same application meet the Required Trust Level, we choose to
migrate the compromised ECU’s application to the one that fits best and still has sufficient
trust. More specifically, the TAF informs the IAM, as he is the Root node of the Trust tree of
each vehicle, that the ATL of a device hosting a CCAM service does not meet the RTL, in
order for the IAM to take the necessary actions. That being said, the IAM has an interface
dedicated for calculating the policy under which a CCAM service can be migrated to an
other ECU. Such policy contains the original and target ECUs of the migration, the security
requirements under which the migration needs to be instantiated (which cryptographic pro-
tocol is going to be enforced a lightweight Diffie-Hellman or an Attribute-Based Encryption
scheme) and which parts of the application needs to be migrated.

Requirements: For this user story to be feasible, the IAM needs to know the Required Trust
Level (RTL) of all the devices that hosts a CCAM service. Similarly the Trust Assessment
Framework needs to be configured to send notifications regarding trust level changes to the
IAM. Moreover, for the critical information of the CCAM application (i.e., integrity/communi-
cation keys), the IAM has a dedicated interface that either specifies a set of attributes that
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are shared between the list of ECUs that allow migration, so as to be encrypted with ABE
or it initiates a Diffie-Hellman between the engaged ECUs. When choosing to encrypt the
migratable data with ABE, the IAM needs to define dedicated attributes, which will allow the
migration of this service to be compiled just once, thus, preventing replay and DoS attacks.

4.4.1 Binary Instrumentation & Device Data and Execution Flow Monitor-
ing

Story-XV: As the AIV, I want to make sure on the freshness of the monitored trustworthi-
ness evidence

Objective: The Attestation Integrity Verification component should be able to prevent numerous
types of attacks. One of these attacks, is called replay attack where an adversary sends to
a verifier evidences from previous successful executions of attestation tasks.

Motivation: As described in the deliverable D2.1 the Trust Assessment Framework calculates
a Trust Opinion over an attestation report provided by the AIV . This attestation report is
based on the attestation/trustworthiness evidences that the AIV collected from all the de-
vices corresponding to this specific Trust Assessment Request. For this purpose, in order
to achieve a real time and accurate depiction of all aspects of Trust defined by the Trust
Assessment Request, the AIV has to be strict in the calculation of the attestation report,
ergo the verification of the attestation/trustworthiness evidence has to meet all the require-
ments defined in 6. One main requirement, defined by the IETF as well, is the freshness
of attestation/trustworthiness evidence, in order for the verifier (i.e., the AIV) to be able to
verify not only the correct creation of the digital signatures that he collected, but also under
which session they were created.

Requirements: For this user story to be feasible, all ECUs, both A-ECUs and S-ECUs (not the
N-ECUs as they are not capable of providing attestation evidence at all), has been con-
figured correctly. More specifically, all capable ECUs should have successfully completed
the Secure on Boarding initiated by the Identity Authentication Management component, in
order to set up their secret keys and the appropriate key restriction usage policies. More-
over, the AIV needs to be able to create and map nonce values for all attested devices for
signing and verification purposes. It goes without saying that all the aforementioned must
be instantiated or supported by the underlying Trusted Computing Base of each device.

4.5 User Stories for Workload Protection using a Trusted Ex-
ecution Environment

The following stories specify the desired protections provided by a TEE and the security-related
services that are provided by a TEE.
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Story-XVI: Protection of Workloads on ECUs

Objective: As an OEM, I want to protect security-critical applications in the vehicle against unau-
thorized modification and information leakage by executing it inside a TEE . The following
requirements are desirable:

1. The integrity of the application and the integrity and confidentiality of its state must be
protected.

2. TEE-protected applications must keep their code paths/logic integrity-protected and
unmodified at all times.

3. TEE-protected applications must keep the data integrity-protected and confidential at
all times.

4. Selected TEE-protected applications must transparently receive encryption keys and
other secrets from remote applications/users, in order to e.g. decrypt input files and
encrypt output files.

Motivation: To protect critical applications against a potentially untrusted or compromised soft-
ware on the vehicle, we require hardware protection for critical workloads.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

2. No requirements are imposed on any software outside the TEE (including but not
limited to the container framework, the operating system, and the hypervisor).

Story-XVII: Integrity-verification of TEE Applications

Objective: As an OEM, I want to ensure that a TEE only launches a given application if it was
able to verify the integrity of the application.

The following requirements are desirable:

1. The OEM must be enabled to authorize a given application and the TEE must be able
to verify the integrity of this application.

Motivation: A security-critical application is deployed along a supply chain and can be modi-
fied in transit. To protect against this risk, we require end-to-end integrity guarantees for
applications to be executed within a TEE. This is usually achieved using digital signatures.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.
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2. The OEM must have access to a corresponding signing key and tools for signing a
trusted application.

Story-XVIII: Attestation of Applications running in a TEE

Objective: As a OEM, I want to be able to remotely validate the integrity of an application that is
executed within a TEE .

The following requirements are desirable:

1. The attestation service ensures that the OEM obtains a correct and fresh crypto-
graphic checksum of the application.

2. The correctness and freshness of the checksum is guaranteed by the hardware and
does not depend on any other software component.

3. As a Application Developer I want to rely on existing TEE-attestation solutions that
seamlessly generate TEE-specific attestation evidence and verify this TEE-specific.

4. TEE-protected applications must create TEE-specific attestation evidences to prove
themselves to other applications.

5. TEE-protected applications must verify the trustworthiness of other TEE-protected ap-
plications.

Motivation: Since the application consists of software that can be changed.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

Story-XIX: Support for Development and Debug

Objective: As an Application Developer of applications for a TEE (on the vehicle main computer,
in an ECU, on the MEC, or on other platforms supporting a TEE), I want to develop and
test the applications (such as TEE Guard, AIV , TAF ) in a familiar non-TEE-based environ-
ment and then seamlessly deploy these applications as stated in Story-XX. The following
requirements are desirable:

1. For seamless migration, support for debug and test should not disrupt the normal
development and test processes deployed today.

2. During debug, the security policy of the TEE is not enforced and thus applications
should not yet contain critical secrets.

3. The story should also be enabled for TEE-applications packaged in containers.
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Motivation: Deploying an application within a TEE reduces flexibility since, e.g. a manifest has
to first be signed with a specific key. During development, user friendly deployment and test
is important to maintain the productivity of the developer.

Requirements: This user story does not impose any requirements since Story-XIX should work
on any development machine.

4.6 User Stories for Creating a Trusted Execution Environ-
ment

The following stories describe how a TEE is designed and how existing applications can be
migrated into it.

Story-XX: Migrating an Application to Gramine with Gramine tools

Objective: The Application Developer converts an existing Linux-style application into an ap-
plication bundle that can be executed within Gramine (“graminize an application” in the
following). The following requirements are desirable:

1. Security: After graminizing an application, the application can only be executed with
the specified security guarantees enforced (i.e. confidentiality and integrity are usually
protected using the Intel Software Guard Extensions (Intel SGX) TEE .

2. Ease of use: Graminizing an existing application should involve minimal effort.

3. Configurable protection: Developers should be able to configure the protections that
are enforced for a given application.

4. Ease of deployment: A graminized application should be easy to deploy and execute.

5. Porting applications to run inside a TEE must involve minimum engineering effort.

6. Porting applications to run inside a TEE must provide flexibility to fine-tune application
parameters and configurations, to block or allow specific files to be accessed, to block
unused sub-systems, etc.

Motivation: By packaging applications within Gramine, they can be executed in an Intel SGX
enclave and can thus benefit from the hardware protection of Intel SGX (or other backends).

Requirements: This user story does not impose any requirements since Story-XX should work
on any development machine.

Story-XXI: Configuring the Security of a TEE

Objective: As an OEM, I want to define the security posture (aka security policies that are en-
forced by the TEE) for each individual application.

The following requirements are desirable:
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1. The OEM can specify specific files as read-only and integrity-protected, some files as
transparently encrypted with specific keys, and some files as completely inaccessible.

2. The OEM can specify sub-systems that are required by each application. E.g., I want
to disable spawning children if the application never uses this functionality, or to disable
eventfd signalling if the application never uses this functionality.

3. The OEM can hard-code the command-line arguments and/or environment variables
passed to each application, to reduce the number of possible control paths taken by
the application.

Motivation: One important goal is to reduce the TCB of the application that is executed in a TEE .
The goal is to only require trust into the TEE hardware, other TEE services, and specifc files
and services with well-defined security guarantees. This is achieved by specifying the TCB
in a so-called Manifest File.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

4.7 Stories for Upgrading and Migrating Protected Workloads

We now describe capabilities to upgrade software or offload TEE workloads.

Story-XXII: Upgrading the TEE Software

Objective: As the CCAM application, I want to migrate application state from one TEE on a
given computer to another (potentially upgraded) TEE on the same computer.

The following requirements are desirable:

1. The migration can migrate from one software version to a later version.

2. While upgrading one TEE instance, it must be ensured that only one new instance is
started and no more than one instance is authorized as the master/reference at any
point in time.

3. It must be ensured that the old TEE is blacklisted and will no longer be seen as the
master/reference.

4. Both version must be authorized by the OEM.

5. During this migration, integrity of program and state and confidentiality of the state
must be protected.

Motivation: To introduce new features or fix bugs, the software that is executed within a TEE
sometimes needs to be updated. This story enables secure upgrade - from one authorized
version to an authorized successor version. For this updgrade it is critical to ensure that
software and state remain protected and can only be importanted into a TEE that is secure
enough.
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Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

2. The OEM has authorized the upgrade.

Story-XXIII: Migrating the TEE Software

Objective: As a CCAM application, I want to migrate a running TEE-protected application’s state
from one computer to a different computer while protecting the state during this transition.

NOTE: In this user story, I mean a new feature of Gramine: Gramine state relocation.
Alternatively, each application can be modified to migrate its own state, instead of a generic
Gramine solution.

The following requirements are desirable:

1. The migration can migrate from one machine to another machine while protecting state
and sofware.

2. Both version must be authorized by the OEM.

3. During this migration, integrity of program and state and confidentiality of the state
must be protected.

4. Upon migrating from one TEE instance to another TEE instance, it must be ensured
that only one new replica is started.

5. Upon migrating from one TEE instance to another TEE instance, it must be ensured
that the old replica is terminated.

Motivation: One objective of CONNECT is to allow workload offloading from the vehicle to the
MEC. This can include security-critical applications that are protected by a TEE. To allow
this new feature, we plan to extend the Gramine Library OS to allow for protected migration
of workload.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.
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Chapter 5

Hardware-Backed Trusted Execution
Extensions for CONNECT

In Chapter 5, we detail the Intel SGX hardware Trusted Execution Environment (TEE) that is
used as the underlying trust anchor in CONNECT . While Chapter 2 surveyed the state of the
art and gave a high-level overview over the Intel SGX TEE technology, we now focus on the
software stack to be used (and extended) in CONNECT . Particular focus is given to the Gramine
Library OS that allows seamless migration of Linux applications into a run-time environment that
is protected by the Intel SGX TEE.

5.1 Intel SGX Features in Detail

Intel SGX is a feature offered by many Intel CPUs. Its goal is to offer hardware protection for
user-space processes. It is a specific type of Trusted Execution Environment (TEE). A high-level
overview of the core functionalities of Intel SGX was provided in Section 2.3.1. We now provide
more details on underpinnings and mode of operation of Intel SGX towards supporting the secure
execution of software binaries.

Connection to User Stories: The SGX protection features outlined in the next sub-
sections are required to provide a robust protection of a TEE (Story-XVI, Story-XVII)
while attestation specifically is required for Story-XVII.

5.1.1 Intel SGX Component: Memory Encryption

At the hardware level, the security guarantees of Intel SGX are enforced using a number of
enhanced hardware flows. The first flow is how the enclave code and data is encrypted in the
system, and it is illustrated on Figure 5.1.

Enclave code/data leaving the CPU is transparently encrypted, and its integrity and replay pro-
tection metadata is calculated and securely stored within the enclave memory. Similarly, when
receiving enclave data from system memory, as soon as it reaches the CPU, the data is decrypted
and checked for integrity and replay attacks. Enclave data is finally consumed by the CPU only
when all these checks pass.
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Figure 5.1: Intel SGX memory encryption engine (MEE) ensures that unprotected
(orange) and protected (grey) memory accesses are separated. Encryption protects
memory from snooping, injection and replay attacks.

Internally, SGX uses a special memory encryption engine for memory protection. This engine
is an extension of a memory controller. Every access to protected memory goes through this
component, which provides in-flight encryption/decryption for memory confidentiality. This engine
also uses an integrity tree to provide memory integrity and replay attack protection.

With this encryption engine mediating all accesses to protected data, the attacker cannot launch
an attack. Any attempt by the attacker to snoop enclave data is futile, since protected data is
encrypted. Additionally, any attempt by the attacker to inject or replay wrong data is detected by
integrity-tree checks.

5.1.2 Intel SGX component: Protected Entry and Exit Points

Another SGX-specific hardware flow contains the enclave entry (EENTER) and enclave exit
(EEXIT) controlled points. These points of entry into/exit from an SGX enclave are controlled
by the CPU. Entering an enclave is only allowed after passing certain checks. The CPU enforces
these access control checks at special enclave entry points. Exiting an enclave is also controlled
by the CPU to guarantee no data leakage outside of the enclave. The corresponding diagram
can be seen on Figure 5.2.

After the SGX enclave is deployed and initialized on the system, the CPU can be directed to jump
in and out of the enclave code via special SGX instructions. The EENTER instruction transfers
execution from the host application to the enclave. EENTER checks the metadata of the enclave
and makes sure that this enclave is properly initialized. After a successful EENTER, the enclave
code is executed until a system event or an exit instruction causes enclave execution to pause.
Once the EEXIT instruction is invoked, the execution is transferred back to the regular code of
the host application. Afterwards, the application can enter the enclave again via an EENTER
instruction. Depending on the enclave workload, it may request many EENTERs and EEXITs,
and enclave enter and exit events may be frequent.

Intel SGX dictates a strict, well-defined interface for data transfers to and from the enclave. It
establishes a trusted mechanism that controls data transfers. The transition between untrusted
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Figure 5.2: Intel SGX controlled entry and exit points (ECALLs and OCALLs).

code and enclave code is done only by EENTER and EEXIT to avoid control flow attacks. Intel
SGX allows only a few predefined entry points inside the enclave, so the attacker cannot jump to
an arbitrary point in enclave code.

In reality, application developers do not write assembly code with EENTER/EEXIT instructions.
Intel SGX provides a programming abstraction that hides the complexity of using EENTER/EEXIT
and provides a familiar, C-style function interface.

This programming abstraction operates on Enclave Calls (ECALLs) and Outside Calls (OCALLs).
As the names imply, ECALLs are used when an untrusted host application calls an interface
function of the enclave, and execution is transferred to the enclave. OCALLs are used in the
opposite direction, when an enclave calls a function of the host application, and execution is
transferred to the untrusted part.

ECALLs and OCALLs are very similar to normal C functions. Under the hood, however, they
perform data transfers and SGX-imposed checks, and execute EENTER/EEXIT instructions. In
this sense, ECALLs and OCALLs are actually similar to Remote Procedure Calls (RPCs). The
diagrams of ECALL and OCALL execution are depicted in Figure 5.2. The ECALL description
follows:

1. The developer of the application adds an ECALL to the untrusted code. At run-time, the
host application wants to execute a sensitive computation on sensitive data. For this, it
needs to enter the enclave via an ECALL.

2. The untrusted part of the ECALL logic marshals ECALL arguments (flattens them so that
the enclave can understand and consume them). Then it prepares the CPU to enter the
enclave mode and invokes EENTER instruction.

3. Now, inside the enclave, the trusted part of the ECALL logic unmarshalls ECALL arguments
passed by the host application and forwards them to the enclave code. The trusted ECALL
logic must copy all arguments from untrusted system memory to trusted enclave memory,
to prevent Time-of-Check to Time-of-Use (TOCTOU) attacks.
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4. The trusted enclave code can now perform sensitive computations over sensitive data.
When the enclave is done, it returns to the host application.

5. To return from ECALL, the enclave invokes the trusted part of ECALL, which in turn invokes
the EEXIT instruction to exit enclave mode. The untrusted part of ECALL forwards the
return values of ECALL to the host application (if there are any return values), and the host
application continues its untrusted execution. The trusted ECALL logic must copy all return
values from trusted enclave memory to untrusted system memory, because the untrusted
part of ECALL has no access to these in-enclave values otherwise.

A similar flow happens for OCALLs, when the enclave’s trusted code wants to execute a non-
sensitive computation, for example network or file system I/O. Typically, the data intended for
enclave consumption is stored encrypted on the hard disk (or received encrypted from the net-
work) and in untrusted host memory, and when brought inside the trusted enclave, it is decrypted
to plaintext. Similarly, the results of enclave execution are typically encrypted before leaving the
enclave.

Enclaves usually use OCALLs to perform untrusted I/O. For example, the enclave may ask the
host application to receive TCP/IP packets from the network. These packets are usually en-
crypted with SSL/TLS, so the untrusted host cannot peek into them. The untrusted host will put
received packets in a special buffer and finish the OCALL. The enclave will get a copy of these
packets in the trusted buffer and can safely decrypt and process packets. Similarly, the enclave
may ask the host application to send a TCP/IP packet to the network. The enclave then may
encrypt the packet with SSL/TLS, put it in a special buffer which will be copied in untrusted host
memory, and the corresponding OCALL will push this encrypted packet to the network.

5.1.3 Intel SGX component: Attestation

Intel SGX is intended for remote-server computations. As mentioned before, a remote user must
gain trust in an SGX application running remotely, in an untrusted environment. SGX provides
two primitives to establish trust: SGX local attestation and SGX remote attestation.

Since in the SGX threat model the remote platform can be malicious, we cannot trust the platform
software to run SGX applications correctly. In particular, remote users must gain trust in the SGX
enclave without having to trust the rest of the platform. Otherwise, various attacks may occur. For
instance, the user can establish a secure communication channel with a remote SGX enclave.
However, this enclave is not the intended one but rather a malicious one that only simulates
correct execution (but in reality can potentially forward secret data to third parties). Another
potential attack example happens in the case where the user establishes a secure communication
channel with the correct remote SGX enclave indeed, but this enclave executes on a malicious
platform that only emulates a correct CPU, but in reality “forgets” to switch to enclave mode.

The solution to the problems outlined above is SGX attestation. Attestation is a process in which
the attesting entity (the SGX enclave in this case) must produce a proof that it is (or was initially)
in some specific state. Having obtained this proof, the remote user will verify it and thus gain trust
in the enclave: Before entrusting the secrets to the remote enclave, the remote user needs to
make sure that (1) this enclave is trustworthy and (2) this enclave runs on a trustworthy platform.

How to perform attestation in practice? The formula is simple:

Attestation = Signature(Measurement) (5.1)
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Figure 5.3: Intel SGX local and remote attestation.

When we “attest a system”, we digitally sign the measurement of the system and later verify this
signature and the signed measurement. In other words, to “attest an SGX enclave”, we “digitally
sign the measurement of the enclave”.

In case of SGX enclaves, the measurement is the enclave. The enclave is a set of code and
data pages loaded inside trusted memory at startup. Since the startup process is deterministic,
and the initial enclave code and data are always the same, we can, during enclave initialization,
measure all code and data using a cryptographic hash function. Intel SGX does it automatically:
as soon as the SGX enclave is finalized, its measurement is also finalized and securely stored
inside enclave memory.

Computing the signature over this measurement brings a number of open questions, e.g., what
entity performs this operation, and how remote users anchor their trust. Since remote users must
trust Intel CPU to execute the enclave anyway, they can root their trust in this Intel CPU. Each
Intel processor possesses a unique, nonforgeable secret stored inside the processor fuses. This
unique secret is used to produce a platform-unique signature. Thus, the enclave measurement
can be signed by the unique private key of the Intel CPU, and the remote user can verify the
signature by comparing it with the known public key (that Intel provides).

To summarize, the enclave measurement assures the remote user that the correct enclave is
executed. The Intel CPU signature, with which the enclave measurement is signed, assures the
remote user that the correct platform executes this enclave.

5.2 Gramine - A Library OS for Seamless Protection of Linux-
style Applications

As outlined in Section 2.2.2, Trusted Execution Environment is a secure area of the server that
can protect confidentiality and integrity of enclosed, loaded code and data. In other words, TEEs
provide a confined, isolated domain in which the application runs, and this domain appears com-
pletely opaque to other software running on the same server. We now dive deeper into the
details, namely the Gramine Library OS that allows user-friendly trusted execution of Linux appli-
cations and the Intel SGX hardware security features of Intel CPUs that allow trusted execution
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of user-space processes in a so-called Enclave.

Gramine is a TEE run-time to run unmodified Linux applications on different platforms in different
environments [37, 38]. For example, Gramine can take a Redis database Linux-x86-64 based
binary and its dependent libraries, without modification or recompilation, and let it run in another
environment. The currently available and most widely used configuration is running applications
inside an Intel SGX enclave on top of the untrusted Linux kernel.

As discussed in the previous section, the Intel SGX technology provides powerful building blocks
for application development. Software developers can port their applications to Intel SGX by
putting only the security-critical part of the application into the Intel SGX enclave and leaving
the non-critical parts outside of the enclave. Several development kits can help ease the task of
writing such code; Intel SGX SDK and Open Enclave SDK are two prominent examples. However,
in many real-world scenarios, it is infeasible to write a new application from scratch or to port an
existing application manually.

Gramine can help ease this porting burden for developers: Gramine supports the “lift and shift”
paradigm for Linux applications, where the whole application is secured in a “push-button” ap-
proach, without source-code modification or recompilation. Instead of manually selecting a
security-critical part of the application, users can take the whole original application and run it
completely inside the Intel SGX enclave with the help of Gramine.

Gramine not only runs Linux applications out of the box, but also provides several tools and
infrastructure components for developing end-to-end protected solutions with Intel SGX:

• Support for both local and remote Intel SGX attestation, with the help of RA-TLS and Secret
Provisioning components.

• Transparent encryption and integrity protection of files; in particular, the Encrypted Files
feature allows security-critical files to be automatically encrypted and decrypted inside the
enclave.

• Optional feature of asynchronous (exitless) transitions for performance-critical applications
because transitions between the enclave and the untrusted environment can be rather slow
in Intel SGX.

• Full support of multi-process applications, by providing complete fork/clone/execve imple-
mentations.

Gramine currently supports many programming languages and frameworks, as well as many
kinds of workloads. Gramine supports C/C++, Rust, Google Go, Java, Python, R and other
languages, as well as database, AI/ML, web-server and other workloads. The typical performance
overhead observed is around 5-20% depending on the workload.

5.2.1 Migrating Applications onto Gramine

Intel SGX Example: Enclavizing an Application with Gramine Tools

The main task of “graminizing” an existing application is to write a correct manifest file. After
the creation of the manifest file, the application developer can invoke tools to generate Gramine-
and SGX-specific files. In particular, the manifest template needs to be expanded to the interim
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Figure 5.4: Gramine story: porting application to Gramine with SGX backend.

version (where all paths are replaced with absolute paths) with the gramine-manifest tool. Then
the interim manifest must be signed with the private enclave-signing key, such that the authenticity
of the graminized application can be proved later during SGX attestation. This is achieved with the
gramine-sgx-sign tool, that produces the final manifest file and the SGX-specific SIGSTRUCT
file as outputs. After this step, the bundle consisting of the application, Gramine, final manifest
file, and the SIGSTRUCT file can be shipped to an SGX-enabled deployment platform and run
there via the gramine-sgx tool. Below is the command-line snippet on how to “graminize” the
application:

# prepare the mani fes t f i l e f o r your app
$ vim python . mani fes t . template

# generate Gramine− and SGX− s p e c i f i c f i l e s
$ gramine−mani fes t python . mani fes t . template python . mani fes t
$ gramine−sgx−s ign −−key s ign ing . key −−mani fes t python . mani fes t \

−−output python . mani fes t . sgx

# run Python workload i n Gramine
$ gramine−sgx python −c ’ p r i n t ( ” Hel lo , wor ld ” ) ’
Hel lo , wor ld

This sequence of steps is depicted in Figure 5.4. Note that Gramine supports two-phase signing:
the development and testing happens on the development platform (with some dummy signing
key) and the actual act of signing happens on a separate signing platform. This split is done
to protect the signing key from being stolen; ideally only a dedicated person has access to the
signing platform (such a platform may not even have network access).

5.3 Initial Architecture of CONNECT Extensions to Gramine

Within CONNECT we will optimize the features of Gramine and Intel SGX to meet the require-
ments and functional specifications identified in Chapter 4. In addition, the CONNECT archi-
tecture requires a range of new features and capabilities that we need to design and implement
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to close gaps identified by those requirements. In this section, we now outline the high-level
architecture for such envisioned extensions to Gramine and Intel SGX.

5.3.1 Motivation and Objectives

Today, and Intel SGX enclave is part of a user process. One design goal is that an operating
system can manage the user-space process including the enclosed enclave transparently with-
out requiring any change. As a consequence, while the OS cannot inspect or modify the enclave,
it can suspend and resume and enclave and roll-back an enclave to an earlier. This would e.g.
break the requirement that after an upgrade, the enclave with outdated (potentially buggy) soft-
ware can no longer be used.

Connection to User Stories: Today’s design of Intel SGX and Gramine do not pro-
tect against state rollback or unauthorized cloning (Story-XXII, Story-XXIII. We now
outline how to meet these requirements by extending Gramine.

The Intel SGX hardware technology does not support sharing the state between two SGX
enclaves. As a consequence, the classic implementation of forking in Linux is impossible in
Gramine. Traditionally in the Linux world, fork is implemented via Copy-on-Write (CoW) tech-
nique that initially shares memory pages between two processes and duplicates them only when
the state of the two processes starts to diverge. This CoW technique cannot be applied in the
SGX environment, because each SGX enclave encrypts its memory pages with a private key,
and thus no two SGX enclaves can access the same memory.

This is the reason why Gramine implements the checkpoint-and-restore logic: upon a fork re-
quest from the application, Gramine collects all the application state as well as the internal state
of Gramine itself, serializes this state and combines it in a single byte sequence. This byte
sequence may be sent to another (child-process) SGX enclave via an encrypted pipe, or may
be dumped to a file (encrypted with an SGX-platform specific key or with a key-broker-service
obtained key). This checkpoint-and-restore logic of Gramine can be re-purposed for several sce-
narios: (1) parent SGX enclave forking a child SGX enclave, as explained above, (2) performing
upgrades of the application or Gramine without losing its state, and (3) migrating the application
with Gramine to another platform. In the following subsections, we describe in detail each of
these scenarios.

5.3.2 Gramine State Relocation: Forking

Forking is the only currently fully implemented usage of the checkpoint-and-restore technique
in Gramine. Figure 5.5 shows this flow. Whenever an application wants to spawn a new child
process, it invokes the fork() system call. The fork system call is intended to create a new
empty process and populate it with the exact same copy of the state as in the parent (forking)
process. Therefore, the task of Gramine is to collect all the state of the parent SGX enclave and
securely copy it into an empty SGX enclave of the child process.

Initially, the application performs some computations and processing and grows its application
state. For example, the application may open some files and establish some network connections.
The application’s state thus will contain the buffers with data read from the files and buffers with
data read from the network. Since Gramine intercepts all file and network I/O requests from the
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Figure 5.5: Gramine state relocation: fork scenario.

application and keeps the metadata on the opened files and established network connections,
Gramine’s state grows to include this metadata (e.g., Gramine will memorize file names, file sizes
and current offsets in the files, as well as the IP addresses and ports of each network connection).

At some point, the application may decide to fork a sub-process – for example, the application
notices a high load and decides to create a worker process to offload some computations to this
worker. The application (the parent process) invokes fork() at this point (1). This fork request
is intercepted by Gramine LibraryOS and processed by Gramine: all application state and all
the corresponding Gramine-internal state is collected into one single blob, with all data serialized
to get rid of pointers to specific memory locations (2). This single blob is simply a sequence
of bytes which can then be sent to the child process. Simultaneously with collecting the state,
Gramine requests the host to create a new empty process with a new empty SGX enclave (3).
Gramine instance in the parent process connects to the newly created Gramine instance in the
child process, performs SGX local attestation so that both the parent and the child SGX enclaves
can gain trust in each other, and establishes an encrypted pipe. Note that the established pipe
between two SGX enclaves is encrypted with a key known to both SGX enclaves (and only to
them), because the two enclaves run on the same SGX hardware platform and thus can derive
the same shared SGX-platform-specific key. After this secure pipe is established, Gramine in
the parent process sends the collected state (called a checkpoint) on this pipe to Gramine in the
child process. The child-enclave Gramine instance receives the state and restores it: Gramine
de-serializes the state, splits it back into application state and Gramine-internal state and rewires
all data structures to use pointers to corresponding memory locations (5). After this step, the
state in the child SGX enclave is the exact replica of the state in the parent SGX enclave, and
Gramine can pass control back to the application that will continue from the location right after
fork() (6).

5.3.3 Gramine State Relocation: Upgrade

Upgrading the Gramine binaries is a not yet implemented usage of the checkpoint-and-restore
technique. Figure 5.6 shows this flow. It may be beneficial to periodically upgrade the Gramine
version without losing the current application state. This may be important if for example an
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Figure 5.6: Gramine state relocation: upgrade scenario.

application is running on Gramine version 1.4, and that version was found to be vulnerable to
some security bug, and it is recommended to run applications under Gramine version 1.5 (which
fixed the security bug).

This can be achieved using the following flow. First, the application developer updates the appli-
cation configuration to the new version of Gramine, by writing a new manifest (if required due to
Gramine changes), re-building the required SGX files (e.g. SIGSTRUCT) and verifying that the
new application works correctly under the new version. Then, the application developer ships the
application configuration bundle together with the new version of Gramine to the same machine
where the current version of Gramine with the application is running.

After this preparation, the upgrade process can start. The application developer triggers the
special checkpoint() system call in the original process, that runs the old version of Gramine
(1). The triggering can be carried out using a signal to the process (e.g. SIGTERM). Gramine
intercepts checkpoint() and checkpoints all the state into a single blob (2). In contrast to the
previous scenario with fork(), Gramine does not create a new process immediately and does
not establish a pipe connection. Instead, Gramine dumps the checkpoint blob into a file specified
as an argument to checkpoint() (3). This file is supposed to be marked as encrypted with
the SGX-platform-specific key in the Gramine manifest. In this case, only another Gramine SGX
enclave on the same platform would be able to decrypt this file and restore the state.

After the state is securely dumped into a file, the developer may stop the previous version of the
SGX enclave. Now the developer may start the upgraded Gramine version from the new bundle
prepared as described above. The developer starts Gramine in a special “restore” mode, specify-
ing as a command-line argument the file that contains the encrypted state (4). Gramine – which is
now the updated version – decrypts this file using the SGX-platform-specific key and restores the
resulting checkpoint, similarly to the fork scenario described in the previous subsection (5). After
the restore is finished, all Gramine and application data is ready for use, and Gramine passes
control to the application, to run from the location right after checkpoint() (6).
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Figure 5.7: Gramine state relocation: migration scenario.

5.3.4 Gramine State Relocation: Migration

Migrating the application with Gramine is another new usage of the checkpoint-and-restore tech-
nique. Figure 5.7 shows this flow. Migration is different from the previous two scenarios in that
both the application and the Gramine state have to be moved from one SGX platform to another
SGX platform. This difference precludes the use of the same SGX-platform-specific key to en-
crypt the checkpointed state on one machine and to decrypt it on another machine. Therefore, an
encryption key needs to come from a third party, which we will call the Key Broker Service (KBS).
Fortunately, Gramine manifest syntax supports encrypted files that use not only SGX-platform-
specific keys, but arbitrary keys obtained from such third parties as KBS.

With this additional complication of KBS key retrieval, the migration process looks similar to the
upgrade process: while the original application and Gramine run in an SGX enclave on Machine
1, the application and Gramine bundle is shipped to a new machine (Machine 2). To start the
migration process, the application developer triggers the checkpoint() system call in the original
process. Gramine intercepts this system call and performs the same sequence of steps as in the
upgrade scenario; steps (1) - (3) in the figure. They key with which the checkpointed state is
encrypted should be provisioned to the original process beforehand by the Key Broker Service
(KBS). KBS – not shown on the figure for simplicity – should have a policy of generating random
ephemeral keys for the exact purpose of state migration between two Gramine SGX enclaves;
KBS should provision the key to the original Gramine enclave and later to the migrated Gramine
enclave, and then destroy this ephemeral key.

The application developer must then terminate the SGX enclave on Machine 1 and copy the
encrypted-state file to Machine 2. On Machine 2, the developer must first start the “key helper”
Gramine SGX enclave (4). The sole purpose of this helper enclave is to establish a connection
to the KBS, obtain the ephemeral key, encrypt this key using the SGX-platform-specific key and
write it as a separate file (5). Notice that without this double-encryption, the ephemeral key would
be stored on the host of Machine 2 in plaintext and could be stolen by a malicious host.

At this point, Machine 2 has all the components to successfully restore the application in the
new Gramine SGX enclave: the application + Gramine bundle, the encrypted-state file and the
encrypted-key file. The developer starts Gramine in a special “restore” mode, specifying as two
command-line arguments: the file that contains the encrypted state and the file that contains the
ephemeral key (6). Upon SGX enclave initialization, Gramine first decrypts the ephemeral key file
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using the SGX-platform-specific key, and then decrypts the encrypted-state file. Finally, Gramine
restores the decrypted checkpoint (7). After the restore is finished, all Gramine and application
data is ready for use, and Gramine passes control to the application, to run from the location right
after checkpoint() (8).
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Chapter 6

Towards Formalized Security &
Operational Assurance Requirements

Having defined in detail the functional specifications (Chapter 4), depicting the capabilities that
the newly developed CONNECT TEE extensions need to offer for supporting the continuous trust
assessment of all relationships to be established across the entire CCAM continuum, in what fol-
lows we proceed with the formal definition of the security, trust and operational assurance
requirements that need to be achieved when reasoning about the trust level of a CCAM ac-
tor. More specifically, it has become apparent that the foundational pillar of such a complex trust
assessment procedure is the use of a highly secure trust anchor that serves as a Root-of-Trust:
In the context of CONNECT , Gramine has been selected as the Trusted Execution Environment
(TEE) that can leverage the hardware built-in RoT capabilities of the target (SGX-enabled) de-
vices. There are several works that conduct formal analysis on the security of such commodity
RoTs (or parts of it), and also a few ones devoted to verifying the trusted computing service as a
whole. However, most of the existing schemes try to verify security without differentiating the
internal cryptography mechanisms of the underlying hardware token from the client ap-
plication cryptography. This approach limits, to some extent, the reasoning that can be made
about the level of assurance of the overall system [24].

For instance, when exchanging trustworthiness claims from the AIV to the CONNECT Trust
Assessment Framework (TAF), to be leveraged as a trust source based on which a fresh trust-
worthiness appraisal of the entire service graph chain can occur (based on the service-centric
trust model managed in the TAF), such claims are generated by the CONNECT TEE Guard and
the provided attestation enablers and are based on the validation of specific system properties.
This process is composed by cryptography operations that the CONNECT TEE Guard is per-
forming for self-consumption (i.e., check authenticity of received run-time trace measurements
by verifying that they are signed under the correct Tracer’s key, correct setup and storage of
HW-based and enclave keys, etc.) but also from security functions (i.e., hashing, asymmetric
encryption, (blind) signatures, correct execution of key restriction usage policies, etc.) that are
intended to guarantee the “verifiability” of the exchanged evidence to the “client” (TAF) applica-
tion. When trying to reason about the correctness of these operations, that directly translate to
the integrity of the provided trustworthiness evidence (which, in turn, allows for the construction
of a validated composable view of the trust state of the entire system topology), it becomes rather
complex. This sets the challenge ahead: Because underlying RoTs are by definition trusted, all
internal operations including handling of cryptography data can be idealized. However, this does
not directly translate to the overall application security that leverages such RoTs.
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Nonetheless, it limits the number of security requirements that need to be achieved by all the de-
veloped attestation, secure exchange and identity management protocols (revolving around the
use of all the CONNECT TEE Guard extensions) to be described in the context of D4.2 [14].
Thus, in the reminder of this chapter, we focus on differentiating those RoT capabilities
and internal cryptographic operations, that are leveraged by the CONNECT TCB, from
those security controls that are needed by the CONNECT TEE Guard to support the entire
life-cycle of the continuous trust assessment process (governed by the CONNECT TAF):
From the secure on-boarding of all in-vehicle sensors and the establishment of the appropriate
CONNECT - and application-related keys to the synchronous/asynchronous communication of
trustworthiness evidence in a secure and verifiable manner. The endmost goal is that all inter-
nal (RoT-centric) operations form the idealized security model of CONNECT which is by default
trusted. All these operations have been expressed through the adoption of a predicate-based
language that allows for the construction of formal statements mapped to specific requirements
which when considered as a whole can represent the properties offered by the underlying TCB
which are considered trusted. Such predicates can then be glued together to model those secu-
rity functions that are ancillary to the trust assessment process (and are based on the “idealized
security model” expressed through the predicates) as axioms and these constitute the require-
ments and assurances that the CONNECT attestation and secure communication protocols need
to achieve (more details on the underpinnings of the CONNECT modelling language can be found
in Section 6.1). These will set the scene for the security analysis of these schemes as part of
D4.2 [14] where the goal is to prove the soundness of all newly developed protocols against the
defined axioms.

Such a granular (security) model will enable the reasoning about the correctness, complete-
ness and zero-knowledge nature of the CONNECT secure life-cycle management functions
that leverage the “perfectly secure” cryptographic operations of the underlying CONNECT TEE,
under various adversarial models and for different security and privacy guarantees excluding any
possible implications from the leveraged cryptographic primitives. Idealizing the cryptography
used internally in a RoT allows to carry out an analysis of the cryptography to the application it-
self more concisely: Especially when considering anonymity- and unlinkability-preservation when
sharing VPs comprising trustworthiness evidence - hence, the need for the appropriate level of
abstraction to take place as depicted in Story-X. This approach simplifies the modelling approach
of the complex CONNECT security functions and attestation protocols that will be described in
detailed in the context of D4.2 [14] and are summarized in the following Table 6.1.

Crypto Primi-
tive

Related User Story Purpose

Configuration
Integrity
Verification
(CIV) [21, 22]

Story-V, Story-VII Allows a Verifier (i.e., the AIV component) to ensure that a Prover
device (e.g., ECU, Zonal Controller and any other in-vehicle sensor
comprising a service graph chain to be assessed) is at an expected
configuration state (Section 3.2.1) This is usually invoked during
the secure on-boarding of an in-vehicle sensor, with the IAM for
establishing the appropriate crypto primitives as well as the neces-
sary key restriction usage policies binded to what is the expected
state of the device (as certified by the OEM), or periodically during
run-time when device integrity evidence is requested by the TAF.
Furthermore, this operation is also executed every time there is an
update in the device’s configuration state; i.e., software update/up-
grade or state migration from another in-vehicle sensor as a result
to an indication of risk (i.e., failed attestation evidence).
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Crypto Primi-
tive

Related User Story Purpose

Story-V, Story-VII As with all attestation variants, security properties of interest include
completeness and soundness of the protocol so that no malicious
Prover can convince a Verifier of the validity of a falsified attesta-
tion statement (if there are no guarantees on the authenticity of the
attestation evidence) as well as the capability of the Prover to pro-
duce attestation assertions in a zero-knowledge manner - no Ver-
ifier is required to learn anything additional about the Prover other
than the fact that a shared attestation assertion/statement is true.
This obviates the danger of implementation disclosure attacks that
may be exposed when details on the configuration of a device (e.g.,
OS Version, type of firmware, etc.) is leaked [20].

Control-Flow
Attesta-
tion [19, 32]

Story-VII Part of the attestation evidence, requested by the TAF component,
may have to do with the run-time behavior/operation of a specific
device. The Control-Flow Attestation (CFA) scheme enables the
verification of the run-time execution of a device by assessing (in
real-time) the control-flow graph of a device’s execution against a
finite state machine model that captures the nominal behavior of
the target device. This is usually triggered for assessing only those
safety-critical functions of the device and is based on the construc-
tion and reception of authentic traces (to be provided by the under-
lying Tracer of the CONNECT TCB).

Composable
Attestation
of Swarm of
Devices

Story-VII This attestation variant extends the CIV and CFA capabilities of
CONNECT from 1-Prover to multiple-Provers. Essentially, it allows
the AIV to enact upon a Request for Evidence (RFE), received by
the TAF, for the collection of fresh trustworthiness evidence from all
devices (in-vehicle sensors) that comprise the service graph chain
for which the trust appraisal is targeted. This RFE might require the
extraction of different types of evidence (based on the type of trust
properties to be assessed) and, thus, necessitates the governance
of all TEE Device Interfaces (TDIs), exposed by each CONNECT
TCB (linked to the run-time monitoring of an extended set of de-
vice characteristics), by the AIV. This, in turn, allows the collection
of the necessary security claims serving as evidence to the trust
quantification model processed by the TAF.

Direct Anony-
mous At-
testation
(DAA) [28, 3]

Story-VIII, Story-X,
Story-XI, Story-XII

Besides trustworthiness evidence on the operational assurance of
a device, one has to cater for a number of privacy-preserving prop-
erties including unlinkability : No receving entity (vehicle or MEC)
should be able to link specific trustworthiness evidence back to the
origin vehicle so as to avoid possible “vehicle fingerpriting” (i.e.,
identification of manufacturing brand of vehicle associated with spe-
cific software stack versions) which might allow an attacker to try
and manipulate existing vulnerabilities of the deployed software.
CONNECT leverages Direct Anonymous Attestation (DAA) for the
provision of privacy-preserving and accountable authentication ser-
vices leveraging group signatures: Through the use of DAA signa-
tures, the TCH is able to anonymize the produced VP while allowing
for authorized entities to link back failed (attestation) evidence to de-
vices for further actions.

Local Attesta-
tion vs. Remote
Attestation

Story-VIII, Story-X,
Story-XI, Story-XII

Multiple attestation schemes - such as the CIV and the CFA - can
be executed either locally, within the target device, or with the sup-
port a remote Verifier. In the former case, the attestation evidence
will be checked locally, by the underlying RoT, in the context of the
enforcement of key restriction usage policies. This scheme ensures
that the use of a specific cryptographic material can be used if and
only if the respective policy is satisfied.
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Crypto Primi-
tive

Related User Story Purpose

Story-VIII, Story-X,
Story-XI, Story-XII

By enforcing such a policy within the TEE-GSE applications, the
TAF and the MD component, we rely on the fact that the gener-
ation of the Verifiable Credentials and Presentations is achievable
under the condition that each entity is at a correct state. In the
latter case, devices without the resource capabilities to host a fully-
fledged CONNECT TCB but a RoT with limited capabilities (such
as the S-ECU), can produce verifiable quotes, on their state, that
can then be verified by the AIV.

Attribute-Based
Encryption
(ABE)

Story-XI, Story-XV It is important to allow for an OEM/Security Administrator or any
other certification authority, to check the trust state of a device at
any point in time. This will not only enable the auditing/certifica-
tion of the target device (an important feature for the enhanced user
acceptance of such CCAM safety-critical services) but will also al-
low the further processing of evidence from those devices with a
decrease in their trustworthiness state so as to identify the exact
point of intrusion (zero-day vulnerability). In this context, CONNECT
will design a novel Attribute-based Encryption (ABE) scheme for
safeguarding the confidentiality of failed attestation evidence (when
recorded on the Blockchain infrastructure) so that only authorized
entities that can prove the ownershup of specific attributes can cre-
ate the necessary decryption keys. This (decentralized) ABE will
remove the need for a centralized component managing the en-
cryption/decryption keys and will allow the devices to leverage the
underlying CONNECT TCB to check the validity of device proper-
ties based on which the necessary encryption/decryption keys can
be created. Such properties can span from identity attributes (such
as type of requesting entity (“Only the respective OEM can get ac-
cess to such low-level attestation evidence and system traces”)) to
device characteristics (“Only devices with the latest set of security
patches can get access to such evidence”) so as to minimize the
risk of possible leakge/compromise.

Link Tokens Story-XI, Story-XII The use of these tokens aims to allow for an external Verifier (out-
side a Vehicle component) to trace back evidence to a specific de-
vice in the case that the attested system is deemed compromised.
Essentially, it enriches the privacy features of the employed DAA
(CONNECT Traceable DAA) algorithm with linkability and tracebail-
ity capabilities but only for those authorized entities with access to
the necessary tracing/linking key associated with the created DAA
Key.

Table 6.1: CONNECT Secure Life-cycle Management Functions leveraging Crypto-
graphic Operations Provided by the underlying TCB.

All operations that leverage the “perfectly secure” cryptographic primitives, provided by the un-
derlying TCB, will be modelled through axioms and will be further formally verified in the context
of Deliverables D4.2 [14] and D4.3 [15]. These cover all CONNECT functional specifications that
target the activities performed for preparing a vehicle (Section 4.2) so as to be part of a trust-
worthy CCAM continuum as well as those for enabling the continuous trust assessment of
the vehicle services (Section 4.3) and the re-establishment of trust (Section 4.4) in case of a
possible compromise or misbehavior. This does not include the specific tasks for protecting the
execution of tasks and service workloads (instantiated in Gramminized execution environments)
(Section 4.5) nor CONNECT trust extensions including state migration and software upgrade
(Section 4.7) as these are offered directly from the underlying RoT and, thus, are part of the ide-
alized security model. As aforementioned, the goal is to converge on a model that can allow for
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the reasoning about the security and privacy offered by the CONNECT secure life-cycle manage-
ment protocols without being bogged down by the intricacies of various crypto-related primitives
of the underlying trust anchor - a capability that may vary in different platforms featuring different
type of RoTs. Considering the agnostic nature of CONNECT to specific types of secure elements,
this type of formal verification provides adequate flexibility without losing the ability to express and
verify fine-grained security characteristics. On the downside, such an idealized approach lacks
in capturing potential vulnerabilities stemming from the internal cryptography, offered by various
secure elements [24], nor it can identify timing attacks, as those presented in. However, this is
something well studied in the literature, when it comes to the non-perfect secrecy of the TEE’s
crypto primitives [30], thus, in what follows we opted for focusing on idealized models capturing
the operational characteristics of real-world automotive applications.

6.1 Language for Modelling CONNECT Secure Life-cycle
Management Protocols with RoT

A number of security requirements need to be met in order to establish and maintain strong
guarantees that will set the basis for assessing the trustworthiness of the nodes but also the data
flows comprising the CONNECT ecosystem. The core security requirement, on top of which we
are building the entire CONNECT framework, is that each critical software component or device
has a trustworthy RoT. Inevitably, this requirement implies a set of trust assumptions that need
to be made. Based on a valid RoT, we are able to extend those requirements needed for building
a valid TCB which allows a host to measure and report (i.e., attest to) its state. In addition, we
analyze the necessary requirements with respect to the secure enrollment of all the software
applications comprising the CONNECT architecture.

Concerning the TEE-GSE , we identify those requirements needed for the secure issuance of all
the verifiable evidence (VCs and VPs) that will be managed by each component. Specifically,
VCs enable a device/component to manage and selectively disclose attributes depicting specific
device characteristics. For instance, if an issuing component (e.g., OEM) verifies the integration
of secure bootup mechanism in a device, then this constitutes an attribute as part of the issued
VC based on which the device at any point in time can generate a proof on whether the output of
this secure bootup process was correct or not. Which, in turn, can translate to evidence on the
design-time integrity of the target device. Furthermore, all attestation enablers (provided by the
TEE-GSE) need to satisfy the following conditions:

• Completeness. If an honest Prover makes a claim (e.g., regarding the correctness of
its operational state), an honest Verifier (i.e., one following the zero-knowledge protocol
properly) will be convinced of this fact by the Prover.

• Soundness. If the statement made by the Prover is false, no malicious Prover can convince
an honest Verifier that the statement is true, except for a negligible probability (soundness
error).

• Zero-Knwoledge. If the statement made by the Prover is true, no Verifier is required to
learn anything additional other than the fact that the statement is true. In other words,
knowledge of the statement is sufficient.
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In parallel, similar requirements are also specified for the CONNECT containers that are not part
of the TEE-GSE (e.g., the MBD and the TAF ). Finally, in the context of the in-vehicle architecture,
it is also essential to capture the prerequisites for the secure on-boarding of all the edge devices
with the in-vehicle computer.

The formalization of the aforementioned security requirements can be achieved using diverse
modeling languages. In CONNECT , we mainly employ a combination of predicate- and algebra-
based languages. Specifically, predicate-based languages are used in order to model the as-
sumptions and conditions that have to be valid in order to ensure the integrity of the produced
trustworthiness evidence (in a verifiable manned). Essentially, predicates serve the modelling
of the internal cryptographic operations of the underlying CONNECT TCB which is part of the
“isealized security model”. On the other hand, axioms depict those properties that need to hold
for enabling the correct operation of the CONNECT TAF based on the trusted execution of CON-
NECT -equipped devices, based on both behavioral properties and low-level concrete properties
about the entities’ configuration and execution (to be considered as trust sources during the trust
quantification of the target device). This is summarized in the following concrete definitions:

• Security Predicates, that depict the assumptions in a format that pairs a formally defined
word with its meaning in terms of security requirements,

• Axioms, that depict the security claims, that should be present for CONNECT to guarantee
that the security requirements are fulfilled.

Based on the use of such flexible predicate-based languages, the trust models presented in
the following sections are split into three components: (i) the predicates which are essentially the
“words” of the language, (ii) the core axioms which define how these predicates fit together to pro-
duce meaningful security requirements, and (iii) the complex axioms which combine predicates
and core axioms showcasing how the CONNECT secureity life-cycle management functionalities
are derived. For example, when we refer to a complex axiom concerning the secure creation of
verifiable evidence for the correctness of a device, this can be achieved by fulfilling the expression
consisting of the respective security predicates and core axioms.

The predicates are the dictionary of the trust model that lists each statement as a word and pairs
it with its meaning. We split them into multiple categories depending on the layer that each model
pertains to: either for an edge device (e.g., ECU, Zonal controller (ZC)), the underlying TCB of a
host or an application running in the in-vehicle computer. The first category (Section 6.3) aims to
give a set of predicates that represent the characteristics of a valid RoT, regardless of the technol-
ogy that is used; if one precondition of these predicates fails then the system will be in an untrust-
worthy state and no guarantees on the security posture can be verified. Other predicates refer
to the instantiation of protocols that enable the configuration and run-time attestation of hosts.
For instance, in the context of run-time attestation (see Table 6.10), the PolicyIAM(p, tcb, kAK)
predicate translates to the fact the Attestation Key (kAK) of the Prover device needs to have been
created correctly during its secure onboarding with the IAM component which in turn fits under
the generic CryptoSafeRoT (r) system predicate for verifying the presence and validity of the un-
derlying RoT of a TCB tcb to create the kAK based on the key usage policies provided to the
Prover during the secure on-boarding. There are also other layers (e.g., per TEE-GSE compo-
nent) that represent intermediate states of the CONNECT data flow. The respective predicates
in Tables 6.13 and 6.17 list the assumptions that need to be taken into consideration when de-
signing the necessary cryptographic primitives to produce verifiable evidence to be sent outside
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the vehicle (e.g., the need to adopt the ETSI TS 102 941 specification [23] for producing IAM
verifiable presentations as shown in the final axiom of Table 6.18).

Finally, we have to highlight that the security of the BIOS/Kernel of the system is considered as
a prerequisite for a valid TCB. If the kernel is approached as a monolithic system, then it should
be assumed that it is trusted in its whole since if even a single component diverges then the
entire kernel is deemed untrusted. On the other hand, the kernel in the emerging edge- and
cloud-computing applications where everything is considered as a service, can also be seen as a
set of micro-services where only a specific set of them should be considered trusted in order for
the entire system to be at a correct state. This reduction of the trusted code base of the kernel
can introduce a chance for the tracing capabilities of the CONNECT to monitor exactly those
functionalities. Besides these considerations, we will also assume that the underlying RoT itself
satisfies memory-safety, type-safety and control-flow safety (see Tables 6.2 and 6.3). In other
words: they are correct, secure and tamper-resistant.

6.2 Operational Essentials for Continuous Trust Assessment

6.2.1 Root-of-Trust for Storage, Reporting and Measurement

The security requirements presented in this section need to capture all the different devices and
applications comprising the CONNECT ecosystem. The first requirement that we focus on per-
tain to the base characteristics of the underlying RoT (RoT) regardless of whether the device
(hosting this RoT) is a powerful on-board unit (OBU), a Multi-access Edge Computing (MEC)-
enabled service or a resource-limited (ECU) device.

By using a trustworthy RoT , a host is able to securely measure and attest to the correct state of
part of its software stack. For a RoT to be considered trustworthy, a set of assumptions need
to be made (Table 6.2). Specifically, as stated in Axiom 1 (Table 6.3), the assumptions are the
following:

1. Memory safety is a crucial and desirable property for any device loaded with various soft-
ware components. Its absence may lead to software bugs but most importantly exploitable
vulnerabilities that will reduce the trust level of the device running the problematic software.
In a nutshell, all accesses performed by loaded processes/services in the underlying mem-
ory map of the host device need to be “correct” in the sense that they respect the: (i) logical
separation of program and data memory spaces, (ii) array boundaries of any data struc-
tures (thus, not allowing software-based attacks exploiting possible buffer overflows), and
(iii) don’t access the memory region of another running process that they should not have
access to. Memory-safety vulnerabilities can be detected in design-time with static code
analysis techniques and during run-time with the well known tool Valgrind that is designed
to identify memory leaks of an executable binary.

2. Type safety is closely related to memory safety as it also specifies a functionality that
restricts how memory addresses are accessed in order to protect against common vulner-
abilities that try to exploit shared data spaces (i.e., stack, heap, etc.). Type-safety is usually
checked during design-time with most programming languages providing some degree of
correctness (by default) paired with static code analysis tools that might catch some ex-
ceptions not covered by the language compiler (i.e., “fuzzing” tools or concolic execution
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engines). However, type-safety can also be checked during run-time with the possibility of
identifying issues that the static method did not identify

3. Operational Correctness is an intermediate abstraction of control-flow safety. It checks
for the static state of the system and relies on the fact that a crucial part of the underlying
kernel is in a trusted state. The operational-correctness aims to provide a more holistic view
of the system by combining dynamic and static data collected by the CONNECT Attestation
Toolkit in order to produce guarantees on the operational trust state of the system.

4. Secure Cryptography: Having strong and secure cryptographic primitives is a fundamen-
tal requirement of any security oriented system. What is needed towards this direction is
a good source of entropy that will be utilized in a secure pseudo-random number genera-
tor (PRNG) so that the keys generated by the system are secure. To make good use of
this source of entropy, we also must ensure that the cryptographic primitives deployed in
the platforms and related systems are fit for purpose. Although in most cases, the secu-
rity of cryptographic primitives is a matter of design, the system’s cryptographically secure
pseudo-random generator, which is used in particular to generate keys, is often left to im-
plementers, with potentially disastrous consequences on the security of the whole system.
In the context of CONNECT we assume security against strong adversaries.

5. Physical Security: Regardless of the RoT that is in place, it is clear that physical attacks
can compromise the functionality of the system. For instance, in the case of TPMs (i.e.,
discrete hardware chips that interconnect with the Low Pin Count (LPC) bus of a system
through) it is possible for an adversary to spoof PCR values and steal sensitive data (e.g.,
the BitLocker disk encryption key), bypassing critical TPM trust guarantees. Consequently,
the physical security of both the device as a whole and the actual pins that connect the
TPM on the device motherboard should be carefully designed if the TPM is to be trusted.

Predicate Description Used in Axioms
PhySecureRoT (r) RoT r is physically secure. Axiom 1
CryptoSafeRoT (r) RoT r uses secure cryptographic primitives. Axiom 1

MemorySafeRoT (r) RoT r has memory safety. Axiom 1
CorrectExecution(r, c) RoT r correctly executes command c. Axiom 1

Table 6.2: Predicates for Valid RoT.

Axiom: RoT

Axiom 1 r,∀ci : ValidRoT(r, h) ⇔ PhySecureRoT (r) ∧ CryptoSafeRoT (d) ∧
MemorySafeRoT (r) ∧CorrectExecution(r, ci)

A RoT r of a host h is valid if and only if it correctly executes commands, is physically
secure, has memory safety and uses secure cryptographic primitives.

Table 6.3: Axiom for Valid RoT.
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6.2.2 Trusted Computing Base

In the context of CONNECT , the TCB of a host consists of all the firmware, hardware and software
capabilities that allow for the enforcement of run-time security policies. As described in Chapter 3,
the CONNECT TCB essentially comprises the tracing unit (exposing all TEE Device Interfaces)
for providing the run-time system measurements capturing the current device’s configurational
and operational state; the key restriction usage policy enforcement module that interacts with the
underlying RoT for checking whether the policies that have been set up for governing the usage
of any cryptographic primitives are met or not; and part of the Attestation Agent responsible for
the establishment of of a secure and authenticated channel with the host towards the provision
of authentic traces. All these operations can be achieved in a trustworthy manner if and only if a
valid RoT is in place (Table 6.3). The RoT shall be able to measure, store and report the results
collected from the TCB’s software components in a secure manner. The necessary predicates
for defining a valid TCB are defined in Table 6.4. Specifically, as explicitly defined in Axiom 2
(Table 6.5), the TCB shall be able to securely measure - through a RoT for measurement - any
software function (irrespectively of where it is running - “untrusted” host or part of the “TCB”) with
the support of the underlying tracing capabilities and TDIS as exposed by the CONNECT TCB.
In parallel, it is of paramount importance that these measurements are securely stored within
a RoT for Storage. This ensures that all attestation measurements and all cryptographic keys
cannot be tampered with. Finally, the TCB shall be able to report on the measurements - through
a RoT for reporting. The secure reporting of the measurements ranges from the reporting of the
secure boot results up to the transmission of run-time traces, reported in a fresh (i.e., avoid replay
attacks) and verifiable manner (e.g., digitally signed with an Attestation Key).

Predicate Description Used in Axioms
SecureDataExchange(h1, h2) Two hosts h1 and h2 have the ability

to securely establish a communica-
tion channel while preserving the ex-
changed data confidentiality and in-
tegrity.

Axiom 3, 7, 9,
10, 12, 13, 14,
15, 17, 18, 19,
20

SafeBound(k1, k2) A cryptographic key k1 is safely
bound to another key k2. Alterna-
tively, k1 can be used only by the en-
tity that owns and can securely use
key k2.

Axiom 3, 6

StorageRoT(r, t) RoT r is part of TCB t of a host and
securely stores information that can
not be tampered with.

Axiom 2

MeasurementRoT(r, t) RoT r is part of TCB t of a host and
securely measures the state of the
TCB.

Axiom 2

ReportRoT(r, t) RoT r is part of TCB t of a host and
securely reports the collected mea-
surements to the requested party.

Axiom 2

Table 6.4: Predicates for Valid Trusted Computing Base.
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Axiom: Trusted Computing Base

Axiom 2 t, h, rS, rM , rR : ValidTCB(t, h) ⇔ ValidRoT (rS, h) ∧ StorageRoT(rS, t) ∧
ValidRoT (rM , h) ∧MeasurementRoT(rM , t) ∧ValidRoT (rR, h) ∧ReportRoT(rR, t)

A host, h, has a TCB, t, that is valid if and only if it consists of a valid RoT for measurement,
rM , that securely measures the TCB software components’ state, a valid RoT for storage,
rS, that securely stores the results and a valid RoT for reporting, rR, that securely reports
the measurements upon arrival of a challenge.

Table 6.5: Axiom for Static Attestation.

6.3 Static and Run-time Attestation Capabilities

One of the core predicates defined for the Axioms that capture the properties to be verified for
the correctness of the TCB (Table 6.5), is related to the secure reporting of measurements that
have been securely measured and stored within a valid RoT element. In the context of CON-
NECT there are various ways of attesting to static characteristics of a host or even run-time
characteristics of an application running within a host. In fact, the number and type of attestation
measurements that need to be collected - and the complexity of the attestation schemes to be
enforced - are intrinsically linked with the required trust level associated with a device or software
component: the higher the required trust level we want to achieve for an entity, which translates to
the trust appraisal based on a multitude of trust properties beyond integrity (including resilience,
robustness, safety, etc. from the possible set of trust properties as defined in D3.1 [11]), the more
rich attestation evidence we want to collect. Attestation measurements can be static (i.e., such
evidence can be the hash of the binary that is running as part of the TCB, the software version of
the application) or they can refer to logs related to the run-time of an application (e.g., collecting
the traces dynamically during the execution of an application). The security requirements for each
of the two types of attestation evidence is analyzed below.

6.3.1 Zero-Touch Configuration Integrity Verification

The process of static attestation refers to the collection of measurements that is related to con-
figuration related information. On start-up of a host, these measurements are performed by the
boot code. The measurements are securely stored in the RoT and are not altered during run-
time. When challenged by a Verifier during run-time, the attested host needs to provide the static
attestation evidence in a fresh and verifiable manner. To address the first prerequisite, the Ver-
ifier (i.e., the challenger) requests the attestation evidence by securely creating and providing a
nonce value. The Prover needs to use an Attestation Key that is securely created, stored and
used to provide a verifiable evidence over the attestation measurements. The results are sent
to the Verifier which are validated against the expected values that characterize the expected
values that the Prover should report. In the complex and diverse ecosystem of CONNECT , the
Axiom should capture hosts with different attestation capabilities as well as different supported
cryptographic operations. For instance, a host might have a Trusted Execution Environment that
supports asymmetric operations but at the same time there can be a low-end host supporting a
Hardware Secure Module (HSM) with only symmetric cryptographic capabilities.
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The formal definition of the Axioms in Table 6.7 requires the set of predicates defined in Table
6.6. The first axiom refers to the secure creation and secure storage of the necessary Attestation
Keys to the host that needs to provide attestation evidence. The issuer of the Attestation Keys
(Attestation Server instantiated as part of the Vehicle Manage) needs to ensure that the Prover
host contains a valid TCB (Table 6.5) and, thus, provide a digital certificate confirming the secure
construction of the HW-basd Key binded to the correct key restriction usage policies. In addition,
to ensure the association of Attestation Keys with a valid RoT (Table 6.3), the keys need to be
securely bound (been a child) to the endorsement key of the RoT . This implies that only the
holder of the endorsement key (i.e., only that particular RoT ) is able to use the Attestation Key to
perform attestation procedures. Given the correct and secure creation and storage of Attestation
Keys within the RoT of a host, a host is able to securely provide evidence attesting to its correct
configuration and integrity if and only if the host is able to securely use - through its RoT - the
Attestation Keys to provide a verifiable evidence of an audit value that a Verifier can compare
with an expected (golden) value that signals the correct and expected state of the host. It is worth
mentioning here that depending on the capabilities of a RoT element, the verifiable evidence over
the audit value can be a digital signature using an asymmetric Attestation Key or a hash-based
message authentication code (HMAC) using a symmetric Attestation Key.

Predicate Description Used in Ax-
ioms

SecurelyStored(x, t) Blob of data x is securely stored
in RoT of TCB t.

Axiom 3

CertifiedI(x) Entity (i.e., data, application, de-
vice) x is certified by an issuer en-
tity I. In this case, I provides a
verifiable credential of certifiability
to the host acting as a certification
of the validity of x. In addition, I is
a trusted entity that has the capa-
bility to validate the correctness of
x.

Axiom 3, 8, 9,
10, 18

AuditDigest(h, d) A host h can securely compute
measurements over its state and
calculate an audit digest d repre-
senting its state.

Axiom 4

VerifiableEvidenceUsingKey(h, x, k) A host h can securely provide a
verifiable evidence for a blob of
data x using key k.

Axiom 4, 7

Table 6.6: Predicates for Static Attestation.

Axioms: Reporting of static attestation measurements

Axiom 3 t, h, I, kAK , kEK : SecureCreationOfAttestationKey(kAK , h) ⇔
ValidTCB(t, h) ∧ SecureDataExchange(h, I) ∧ SecurelyStored(kAK , t) ∧
SecurelyStored(kEK , t) ∧ SafeBound(kAK , kEK) ∧CertifiedI(kAK)
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A host h can securely obtain and store Attestation Keys kAK if and only if h has a valid TCB
t, there is confidential and secure communication with a trusted issuer I (i.e., IAM), kAK

are safely bound to the endorsement key kEK of the RoT and I has generated and sent
verifiable evidence to h certifying kAK to be used in attestation procedures.
Axiom 4 kAK , h, d : SecureStaticAttestationEvidence(kAK , h) ⇔
SecureCreationOfAttestationKey(kAK , h) ∧ AuditDigest(h, d) ∧
VerifiableEvidenceUsingKey(h, d, kAK)

A host h can securely produce static attestation evidence (e.g., Configuration Integrity Ver-
ification (CIV) evidence) using a key kAK if and only if h can securely create Attestation
Keys and provide a verifiable evidence using its Attestation Key over an audit value d with
respect to its configuration and integrity of the host.

Table 6.7: Axioms for Zero-Touch Configuration Integrity Verification.

6.3.2 Run-time Attestation

Static attestation measurements enable a host to securely attest to its correct configuration and
integrity of instantiated/loaded software. However, in many cases we want to ensure that the
attested host is in a correct state during the execution of its application. To achieve that, it is
necessary to design run-time attestation mechanisms which enable the continuous monitoring
of system critical applications and devices running within the CONNECT ecosystem. It should
be highlighted that the type of run-time attestation to be adopted for each type of TCB is highly
dependent on its capabilities to dynamically measure the state of the host in a secure fashion.
The development of run-time attestation procedures require the existence of a dynamic tracer
software application which is part of a host’s TCB. According to Axiom 2 (Table 6.5), since the
tracer is part of a valid TCB, it is required that the tracer software is statically attested along
with the other TCB software components during the boot up process and is equipped with a pre-
established key so as to guarantee that only authentic traces can be processed by the Attestation
Agent running in an isolated environment (protect against attackers trying to impersonate a valid
tracing module which will violate the correctness of the entire attestation process).

In the axioms presented in Table 6.9, there is a list of security requirements that describe the
prerequisites for a valid tracer application to securely use Attestation Keys in order to participate
in a run-time attestation procedure (Table 6.8). First of all, for a tracer application to securely
collect and report attestation evidence, it needs to be part of a valid TCB. This enables the
secure creation of (static) attestation evidence for the tracer application itself. Secondly, a tracer
key needs to be securely produced and stored in the underlying RoT to allow only the tracer
application to provide verifiable evidence for the collected attestation data. Assuming that such
a tracer application resides in a valid TCB, the second axiom analyses the requirement for the
tracer application to securely compute attestation evidence using a securely produced Attestation
Key (Axiom 3 in Table 6.7). This introduces the requirement that the Attestation Key used for the
run-time attestation operations need to be associated (i.e., safely bound) with the tracer’s key.
According to the final Axiom 7 of Table 6.9 if the host is able to securely prove to a Verifier
that these key restriction requirements are enforced using a key restriction usage policy then
the attestation evidence consists of a digital signature over a nonce value that is sent by the
Verifier. This allows a Verifier to trust that the local attestation is securely performed by the
Prover by validating the signature. If a host does not support such a local attestation scheme,

PU – Public Page 75



D4.1 - Conceptual Architecture of Customizable TEE [. . . ]

then the challenger should provide - along with a nonce - the type of attestation evidence (i.e.,
run-time traces) that the Prover should provide in a verifiable manner. The Prover - through
the tracer - securely computes the attestation measurements, constructs the verifiable evidence
and provides the result back to the Verifier. Finally, the Verifier validates the results using the
corresponding golden values describing the expected responses that the Prover should provide.
Throughout the challenge-response protocol data confidentiality and integrity is assumed (e.g.,
the communication between a Verifier host and a Prover host is securely established using the
necessary cryptographic credentials).

Finally, even though we focus on the security requirements of a valid tracer software application
in the context of CONNECT there is one critical functional requirement that should also be met.
Given the fact that the ECU devices constitute far edge devices within the CONNECT ecosystem,
it is imperative to take into consideration the overhead that such a tracer application poses against
the intended ECU application. In other words, it is essential to safeguard the operation profile of
the ECU devices that perform safety critical processing of kinematic data under strict real-time
constraints. Concerning the run-time tracing capabilities there are two main approaches that with
different characteristics, namely the intrusive and non-intrusive tracing. In contrast to an intrusive
tracing strategy, a non-intrusive tracer does not change the intrinsic timing behavior of the host
under attestation. External trace probes or on-chip tracing capabilities enable the monitoring of
a device during run-time without consuming resources from the device or affecting the execution
time of the application under inspection. The aforementioned predicate of a non-intrusive tracer
is also recorded in Table 6.8.

Predicate Description Used in Axioms
KeySecurelyProduced(k, t) Key k has been securely generated

and stored in RoT of a TCB t.
Axiom 5, 8

ApplicationInHost(a, h) Application a is running on host h. Axiom 9, 10, 18
ApplicationInTCB(a, t, h) Application a is part of the TCB t of

a host h.
Axiom 5, 8, 9, 18

ChallengeByHost(h) A Challenge (e.g., including a nonce
value) has been securely created
and transmitted by host h.

Axiom 7

NonIntrusiveTracer(a, kTRACER) A tracer application a is collecting
traces in a non-intrusive manner us-
ing a dedicated key kTRACER.

Axiom 5

Table 6.8: Predicates for Run-time Attestation.

Axioms: Run-time Attestation

Axiom 5 tracer , t, h, kAK , kTRACER : AttestableTracerInHost(tracer , h) ⇔
ValidTCB(t, h) ∧ApplicationInTCB(tracer , t, h)∧
NonIntrusiveTracer(tracer , kTRACER)∧
SecureCreationOfAttestationKey(kAK , h) ∧KeySecurelyProduced(kTRACER, t)

A tracer application tracer running in a host is attestable if and only if tracer is part of a
valid TCB t running in the host h, h can produce static attestation for t, and a tracer key
kTRACER is securely generated and stored in the RoT.
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Axiom 6 tracer , h, kAK , kTRACER : TrustworthyTraces(tracer , h) ⇔
AttestableTracerInHost(tracer , h) ∧ SafeBound(kAK , kTRACER)

A tracer application tracer running in a host h can securely produce run-time attestation
evidence if and only if the tracer application is attestable and the Attestation Key kAK used
in scope of run-time attestation operations is securely bound to the tracer key kTRACER.
Axiom 7 tracer , kAK , h1, h2, daudit : SecureRun− timeAttestationEvidence(kAK , h1)
⇔ TrustworthyTraces(tracer , h1) ∧ SecureDataExchange(h1, h2) ∧
(AuditDigest(h1, daudit)∨
VerifiableEvidenceUsingKey(h1,ChallengeByHost(h2), kAK))

A host h1 can securely produce run-time attestation evidence to a Verifier host h2 using a
key kAK if and only if h1 has a tracer tracer that can securely produce run-time attestation
evidence on top of a secure channel established between the two entities. Depending on
the capabilities of h1, the run-time attestation evidence can be:

• a signature of a challenge/nonce using the Attestation Key kAK provided that the host
has local attestation capabilities, or

• an audit digest daudit that can be used by a Verifier to validate the correctness of the
values by comparing them to a set of expected values.

Table 6.9: Axioms for Run-time Attestation.

6.4 Instantiating the CONNECT TCB

As aforementioned, the architecture of the CONNECT framework positions the various building
blocks across the all layers of the CCAM continuum: from the in-vehicle computer and devices,
to the MEC and cloud infrastructure. In all cases, there are security requirements that are piv-
otal for the CONNECT TEE-GSE to be instantiated and to securely perform its functions. The
requirements are built on top of the fact that each component of the CONNECT TEE Guard is
running on hosts that have their own valid TCB with attestation capabilities (forming a notion of a
Distributed RoT). Even in the case of the in-vehicle architecture (Chapter 3) where all the TEE-
GSE applications and other services are running within a single in-vehicle computer, each of the
safety critical components is running in a confidential manner with its own TCB.

For the secure enrollment of any of the TEE-GSE components or other CONNECT -related ser-
vices (i.e., TAF , MBD) as well as the secure on-boarding of ECU devices (to be examined in
Section 6.8) it is essential that their state is validated by a trusted external entity. This entity is
going to verify the correct bootup of the application or device that is to be enrolled. In addition,
for the TEE-enabled components it shall be able to verify that the necessary enclaves have been
launched correctly (e.g., with the expected manifest files) by leveraging the Grammine attestation
extension capabilities. This role is addressed by the Attestation Server Attestation Server (AS)
component. This entity can be launched within an in-vehicle computer or to the backend,
as part of an OEM’s vehicle management capabilities. In some cases, the AS component
may need to acquire a set of reference values to validate that an enrolling entity is at an expected
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state. Depending on the scenario, these reference values can be fetched from an IAM application
that is securely enrolled (see Section 6.4.1) within a topology or directly from the OEM services
residing in the backend. For instance, such reference values can be the expected software ver-
sion of an application or the contents of the manifest file for an Enclave responsible for running
one of the TEE-GSE components. Upon successful validation of an entity’s state, the AS com-
ponent issues a VC which certifies that the entity (i.e., software component or device) has been
successfully enrolled. This is equivalent to verifying the correct boot up of the enrolling entity
and the fact that it is running a certified application. As shown in Axioms 9 (Table 6.12) and 18
(Table 6.21) this VC is necessary for an entity to acquire all the necessary application-related and
CONNECT -related keys by the IAM.

6.4.1 Secure Enrollment of CCAM Services

Chapter 3 presents the core architecture of the CONNECT Trusted Computing Base. The first
component that needs to be initialized is the IAM component which will be responsible (among
other things) for the secure enrollment and on-boarding of all in-vehicle sensors as well as the
CCAM services instantiated within each of these devices. Towards this direction, the IAM needs
to securely establish a connection with the backend OEM server allowing the continuous interac-
tion and secure exchange of information related to the types of application and services compris-
ing the software stack of each in-vehicle sensor. Essentially, the IAM receives application-centric
VCs certifying the deployed applications and including information such as type of OS an software
version instantiated per in-vehicle sensors, and the reference value of the sensor’s nominal con-
figuration and behavioral state. In addition to that, the IAM is also responsible for the ratification
of the secure enrollment of all TEE-GSE components.

The predicates required for the definition of the secure enrollment axioms are listed in Table 6.10.
The Axiom in Table 6.11 describes the requirement for the secure launch of an IAM component
within a host (i.e., In-vehicle computer or MEC). Specifically, for an IAM software component to
be securely enrolled within a host, it needs to be running in an isolated environment . Within this
isolated environment, the IAM needs to be part of a valid TCB. This ensures that during bootup
of the host, the IAM application is securely measured by the underlying RoT , has securely
attested to its correct configuration through the secure bootup process. This information is
shared with the AS component which compares the attributes against the respective expected
values provided by the OEM for an IAM application. Upon validation, the AS component issues
a VC which certifies that the application has successfully enrolled. This VC allows the IAM
application to connect with the backend application and fetch all the necessary reference values
that are expected to be reported by any other service that wants to securely enroll or device that
wants to securely onboard. These reference values are transmitted by the OEM in a form of a
VC as well. Finally, a master key (e.g., in the case of the in-vehicle computer the master key is
referring to the vehicle master key) needs to be securely generated and stored within the RoT
of the IAM ’s host and the IAM has securely initialised the CONNECT key management system.
The CONNECT key management system within the IAM will be responsible for storing all of
the required keys which are derived through key derivation functions from the master key. The
IAM will manage these key’s distribution to other components and devices as the are on-boarded.
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Predicate Description Used in Ax-
ioms

KeySecurelyLoadedIAM(k, t, h) Key k has been securely issued
by IAM and is securely loaded into
the valid TCB t of host h.

Axiom 9, 14,
15, 16, 17, 18

ApplicationHasAccessToKeyIAM(a, k) Application a has access to key k
issued by the IAM component.

Axiom 10

SecureContainer(s, h) Secure Container s is running in
host h. This provides an isolated
environment for an application to
run with its own properties and
is capable to provide guarantees
on its design and run-time correct
state.

Axiom 9

Table 6.10: Predicates for Secure Enrollment.

Axiom: IAM Secure Enrollment

Axiom 8 iam, t, kVMK , s, h : SecureEnrollmentIAM(iam) ⇔ SecureContainer(s, h) ∧
ApplicationInTCB(iam, t, s) ∧ CertifiedAS(iam) ∧ CertifiedOEM(iam) ∧
KeySecurelyProduced(kVMK , t)

IAM application iam is securely enrolled if and only if host h is able to spawn a secure
container s, on which iam is running, equipped with a valid TCB t; iam has been attested
to its correct configuration and it is certified by the AS component; has been certified by
the OEM by obtaining a application-centric VCs with the expected (reference) values for for
all services and devices as part of the target vehicle’s E/E topology; has securely stored
the Vehicle Master key kVMK in its RoT; and has correctly instantiated the overall CON-
NECT key management system within its RoT (placeholder for the verification of the cor-
rect creation of Attestation Keys per TCB instantiated in each one of the other TEE-GSE
components and in-vehicle sensors).

Table 6.11: Axiom for the secure enrollment of IAM.

For the remaining of the software components comprising the CONNECT TEE-GSE , they need to
enrol in a secure manner including the connection with the IAM component in order to acquire the
necessary cryptographic material. This implies that there needs to be an IAM component that is
already securely enrolled (Axiom 6.11) prior to the launch of all other CONNECT -related security
components that need to run within a secure container. Once the boot up of entire TCB has been
achieved, the Trusted Third Party Attestation Server component needs to ensure that the software
component is at a correct state. All the required reference values can be retrieved through the
IAM component. With the issuance of the AS VC the software component can demonstrate to the
IAM that is securely enrolled. This allows the IAM to securely transmit all application-related and
CONNECT related keys to the enrolled software component. These keys shall be securely stored
in the RoT of the TCB that the software component is running. Concerning the CONNECT related
keys, there needs to be a policy dictating the conditions based on which they keys can be used.
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Specifically, the IAM may use the reference values in order to enforce a key restriction usage
policy to the enrolled component that allows us to dictate the conditions (e.g., configuration state
of the component) based on which the respective RoT element can use a specific key.

On the contrary, within the CONNECT ecosystem there are also software components running in
a host that are not part of its trusted software stack. For these software components, the security
requirements are limited to ensuring the data confidentiality and integrity during data exchange.
Such cryptographic material is received during the secure enrollment phase.

Both axioms for the secure enrollment of software components - either residing in and outside of
the TCB of a host- is presented in Axiom 6.12.

Axioms: Secure Enrollment of Software Components

Axiom 9 a, iam, s, t, h, p, kAPP , kAK ⊆ kCONNECT :
SecureEnrollmentTCB−SW (a) ⇔ SecureEnrollment(iam) ∧
SecureContainer(s, h) ∧ CertifiedAS(a) ∧ ApplicationInTCB(a, t, s) ∧
SecureDataExchange(s, iam) ∧ KeySecurelyLoadedIAM({kAPP , kCONNECT}, t, h) ∧
KeyRestrictionUsagePolicy(p, t, kCONNECT)

An application a is successfully enrolled to the IAM component iam if and only if iam is
securely enrolled; a is certified by the AS component concerning its correct configuration
(during bootup); is part of a Trusted Excution Environment within a secure container s
meaning that it can be securely measured and reported at any point in time; has established
secure communication with iam and has securely established the required application-
related keys kAPP and CONNECT -related keys kCONNECT. These keys need to be securely
stored in the RoT of t. Regarding the latter set of keys, their usage is controlled by a key
restriction usage policy which allows the use of the specific keys under the condition that
a is at a correct state (extracted from the application-centric VCs the IAM acquired from
the OEM). This KeyRestrictionUsagePolicy is not expressed as a predicate since it is the
foundation of CONNECT ’s novel local attestation capabilities and will be formally verified.
The related software components that need to meet this axiom are the following: AIV, TCH,
TAF, MD.

Table 6.12: Axioms describing the security requirements for the secure enrollment of
software components.

6.5 Modelling the TEEguard Extensions

This section focuses on the security requirements concerning the creation of all the verifiable
evidence produced by the TEE-GSE applications. These requirements are essential for the dy-
namic trust assessment of the monitored infrastructure. In addition, they enable the inclusion of
the trustworthiness information within the V2X communication. For the information transmitted
outside of the vehicle, we need to ensure that the identity of the vehicle - or of its services - is
not compromised. To this end, it is essential that the verifiable evidence included in the T-CAM/T-
CPM messages cannot be linked back to a specific entity. This is achieved by assuming that each
TEE-GSE component is able to acquire an anonymized credential, associated with its keys used
for producing its verifiable credentials or presentations. This anonymized credential is issued by
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a trusted privacy certification authority (PrivacyCA). This allows each component to produce ver-
ifiable evidence without enabling this verifiable evidence to be associated with the identity of the
vehicle (table 6.13). In fact, the predicate presented in the table below is also essential for the
creation of any other verifiable credential that is going to be used to produce the IAM verifiable
presentation to be included in a T-CAM/T-CPM message. Thus, the AnonymizedCredential pred-
icate is also used for the secure acquisition of the credentials for the keys used by the TAF, the
MD and the TCH when creating their VCs (Subsection 6.7 and 6.8 respectively).

Predicate Description Used in Ax-
ioms

AnonymizedCredentialPrivacyCA(k) Key k has an anonymized credential as-
sociated with it. This credential is is-
sued and transmitted securely by a Pri-
vacyCA and it is securely stored along
with k. This allows the signing entity to
verifiable credentials and presentations
in a privacy enhancing manner.

Axiom 14,
16, 17

Table 6.13: Formal Predicates for CONNECT functionalities.

6.5.1 Attestation and Integrity Verification

A set of security requirements are defined in order to enable all the functionalities supported by
the AIV component. The AIV component - which is part of the TEE-GSE - is responsible for
collecting attestation evidence from the securely on-boarded devices, computing the attestation
results and forwarding them to the TAF and TCH. If an attestation process fails, then the collected
evidence should be reported to a DLT in order to be available for analysis by the OEM and other
regulatory authorities.

First and foremost, as stated in the first Axiom of 6.15, a software component can attest to its
correct state if and only if it has been securely enrolled (6.12) and has successfully created
its Attestation Key. Thus, it shows that the key restriction usage policy has been successfully
enforced . This is equivalent to the component being able to provide run-time evidence about it
being at a correct state. This Axiom is valid for only those components that have the necessary
resources to instantiate a valid TCB. As was also aforementioned, not the entire software stack
is subject to attestation but only those safety-critical components pertaining to the verification of
the data collection and management software (especially for kinematic data).

Based on that, the AIV component can securely construct its attestation report for a set of devices
if and only if the AIV component is itself in a correct state, the devices are securely on-board and
data confidentiality and integrity is achieved throughout their communication. Finally, in case of a
failed attestation, the AIV needs to be able to securely publish the failed attestation evidence to
the CONNECT DLT. The failed attestation evidence acts as a diagnostic log to allow the device
manufacturers to investigate and identify the reason for the error. According to the third axiom of
6.15 the AIV component needs to be securely enrolled with the IAM component, needs to prove
that it is at a correct state (i.e., through the use of its local attestation scheme) and needs to
provide the failed attestation evidence to the DLT by specifying the conditions based on which
the data can be accessed (table 6.14). For example, this can be achieved through the issuance
of an Attribute-Based Encryption Key - by the IAM component - that can be used by the AIV in
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order to enforce restrictions on who has access to the failed attestation evidence (i.e., only the
consumers with the correct attributes are able to decrypt the content published on the CONNECT
DLT ). Data confidentiality and integrity is assumed throughout the communication between the
AIV and the CONNECT DLT .

Predicate Description Used in Ax-
ioms

EnforceAccessControlPolicy(a, t, k) Application a securely uses -
through its TCB t - its key k to pro-
vide an access control policy over
a piece of information.

Axiom 13

Table 6.14: Formal Predicate for the secure enforcement of access control policies
dictating the conditions to access a resource.

Axiom: AIV core functionalities

Axiom 10 s, h, kAK : CorrectState(s) ⇔ SecureEnrollmentTCB−SW (s) ∧
SecureRun− timeAttestationEvidence(kAK , h)

A software component s that is part of the CONNECT TCB is at a correct state if and
only if s is securely enrolled, and can securely produce run-time attestation evidence
through the use of its local attestation scheme.
Axiom 11 a, ∀d ∈ DO, h : SecurelyProduceAttestationReport(a,DO) ⇔
CorrectState(a) ∧ SecureOnBoarding(d) ∧ SecureDataExchange(h, d)

The AIV component a can securely produce the attestation results for a set of devices
comprising a data object DO (i.e., the set of devices is decided by the TAF through the
request for evidence process. In fact, TAF might request evidence for a subset of DO) if
and only if a is an application that is at a correct state, each device d in RFE is securely
on-board and data integrity and confidentiality is achieved throughout the attestation
procedure.
Axiom 12 a, h, dlt, t, kCONNECT : SecurelyPublishEvidenceToDLTAIV (a) ⇔
CorrectState(a) ∧ SecureDataExchange(h, dlt)∧
EnforceAccessControlPolicy(a, t, kCONNECT)

The AIV component a can securely publish attestation evidence of failed attestation pro-
cedures to the CONNECT DLT dlt if and only if a is in a correct state, has data integrity
and confidentiality during the communication with the CONNECT DLT and can provide
the failed attestation evidence by enabling access control policies for the consumption
of the data using the necessary key, kCONNECT.

Table 6.15: Axioms for the Attestation Integrity Verification component.

6.5.2 Trustworthiness Claims Handler

The reports produced by the AIV , the MBD, and the TAF , holding trust-related information and
embodied into Verifiable Credentials are securely forwarded to the TCH component - which is
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part of the TEE-GSE . Assuming that the TCH component is at a correct state, it will be able to
validate and aggregate all this information (for a given data object), into a Verifiable Presentation
for sharing with the other CCAM actors (prior to the establishment of a trust relationship) but
in a privacy-preserving manner. Essentially, the detailed attestation results will be adequately
abstracted by having the TCH verifying the attestation results and issuing new (group-based)
attribute assertions aggregating the attestation results (for the same type of trust property) for all
devices comprising a service graph chain. This will allow, for instance, the creation of a vehicle
integrity attribute which will be “true” if and only if the CIV results from all devices are “true”.
Which will be further protected through the appropriate cryptographic primitives; i.e., group-based
signatures and link tokens. Given that the keys used to produce the input AIV , MBD and TAF
credentials are constrained by key restriction usage policies, the TCH is assured that the local
attestation schemes have been successfully applied and the respective components are in a
correct state. Finally, these VCs are used by the TCH to construct the VP (selectively) disclosing
this trust-related information needed for the neighboring vehicles to calculate their own local trust
opinions whereas the MEC-instantiated TAF can maintain an up-to-date composite view of the
trust state of the entire CCAM continuum. Prior to their broadcasting, the VPs are sent to the
IAM to be wrapped around a signature leveraging PKI-issued short-term anonymous credentials
(pseudonyms) for enhanced anonymity. The complete definition is presented in Axiom 6.16.

Axiom: Trustworthiness Claims Handler security requirement

Axiom 13 tch,DO,md, aiv, taf, t, h, kAC : SecurelyProduceVPTCH(tch,DO) ⇔
CorrectState(tch) ∧ SecurelyProduceAttestationReport(aiv,DO) ∧
SecurelyProduceVCMD(md,DO)
∧SecurelyProduceVCTAF (taf,DO) ∧ SecureDataExchange(tch, aiv) ∧
SecureDataExchange(tch,md) ∧ SecureDataExchange(tch, taf) ∧
KeySecurelyLoaded(kAC , t, h) ∧AnonymizedCredential(kAC)

The TCH component tch securely produces its TCH Verifiable Presentation for a data
object DO if and only if tch is at a correct state; AIV component aiv securely produces
its attestation report for devices that are part of DO; and MD md and TAF taf com-
ponent produce their Verifiable Credentials (including the Misbehavior Report and Trust
Opinion, respectively) for DO. All this information shall be sent to tch securely based on
which a Verifiable Presentation will be constructed selectively disclosing the trust-related
information needed for the vehicle-wide trust quantification.

Table 6.16: Secure creation of TCH Verifiable Presentation.

6.5.3 Identity Authentication Management

The final requirement has to do with the way that the TCH VP is converted into privacy preserving
trustworthiness information that accompanies the corresponding CAM/CPM messages. As initial
step, the creation of the IAM verifiable presentation requires that the TCH has securely produced
(axiom 6.16) and transmitted (secure exchange of data) its TCH VP to the IAM component which
is also part of the TEE-GSE . According to the ETSI TS 102 941 specification [23], the IAM
shall be able to securely obtain, store and use pseudonym credentials (i.e., pseudonyms) issued
by a trusted Pseudonym Certification Authority (Pseudonym Certification Authority (PCA)) as
specified in the specification. By adopting the Trust and Privacy Management specification by
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ETSI, the transmission of V2X messages is performed in a way that preserves the anonymity of
the involved vehicles while enhancing observability to improve the safety offered by the offered
CCAM services. This trust assumption is captured in the predicate presented in table 6.17.
Equivalently, this mechanism enables pseudonymity that protects the privacy of the vehicle while
allowing accountability for the V2X information transmitted. Finally, unlinkability ensures that
the transmission of similar V2X messages do not allow an adversary to link or correlate the
messages with a specific vehicle. Axiom 6.18 illustrates the correct creation of the IAM Verifiable
Presentation.

Predicate Description Used in Axioms
PseudonymCredentialPCA(k, t, h) Host h has securely obtained a

pseudonym certificate by a PCA
for its key k residing in the RoT of
the host’s TCB t. The entire pro-
cess for obtaining such a certifi-
cate is aligned with ETSI TS 102
941 specification [23].

Axiom 15

Table 6.17: Formal Predicate for the secure acquisition of authorization tickets as
specified in the ETSI TS 102 941 specification.

Axiom: Identity Authentication Management security requirement

Axiom 14 iam,DO, tch, t, h, kAC : SecurelyProduceVPIAM(iam,DO) ⇔
CorrectState(iam) ∧ SecurelyProduceVPTCH(tch,DO) ∧
SecureDataExchange(iam, tch) ∧ KeySecurelyLoaded(kPSEUDONYM , t, h) ∧
PseudonymCredentiaPCA(kPSEUDONYM , t, h)

The IAM component iam securely produces its Verifiable Presentation for the trustwor-
thiness data characterising a data object DO if and only if iam is at a correct state,
TCH is securely producing and transmitting its verifiable presentation for DO to iam
and iam has securely obtained, stored and used a pseudonym credential to construct
its verifiable presentation.

Table 6.18: Secure creation of IAM Verifiable Presentation.

6.6 Modelling the Misbehavior Detection Component

The secure creation of the Misbehavior Report (again encoded as part of a VC)) outputted by
the Misbehavior Detection component involves the consumption of raw data sent by the devices
through the Facility Layer. By default, the Facility Layer - whose main purpose is to forward
in-vehicle sensor (kinematic) data to the applications - doesn’t provide an attack surface for an
adversary since all relayed data are signed by the origin ECUs or Zonal Controllers (integrity
preservation). However, as this module constitutes the data gateway between the in-vehicle sen-
sors and the Vehicle Manager, it is periodically attested by each one of the TEE-GSE components
when receiving such kinematic data. By default the Facility Layer is not part of CONNECT’s TCB
so as to avoid the additional overhead that this might pose in the relaying of kinematic data that
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needs to be rather efficient in such safety-critical applications. As shown in Axiom 6.19, there
needs to be a secure communication between the Facility Layer and the MD component to en-
sure the data integrity and confidentiality. This requires that both the MD component and the
Facility Layer need to be securely enrolled with the IAM. Finally, the MD component needs to be
at a correct state in order to be able to use the necessary anonymized credential to generate the
Misbehavior report verifiable credential. The anonymized credential is necessary to ensure that
the Misbehavior report can be shared with other V2X services (i.e., outside of the vehicle) without
compromising the identity of the MD component - and the vehicle in general.

Axiom: Misbehavior Detection security requirement

Axiom 15 md, fl, t, h, kAC , DO : SecurelyProduceVCMD(md,DO) ⇔
CorrectState(md) ∧ SecureEnrollment(fl) ∧ KeySecurelyLoaded(kAC , t, h) ∧
AnonymizedCredential(kAC)

The MD component md securely produces its misbehavior report verifiable credential -
i.e., assessing a data object DO - if and only if md is at a correct state it securely re-
ceives DO-related data from the Facility Layer component fl which is securely enrolled
and md component has securely obtained, stored and used an anonymized credential
for kAC to generate the misbehavior report verifiable credential.

Table 6.19: Secure creation of Misbehavior Report Verifiable Credential.

6.7 Modelling the Trust Assessment Framework

The TAF requires input from multiple trust sources in order to compute its verifiable credential. In
axiom 6.20 we specify the requirements assuming that trustworthiness evidence are coming ex-
plicitly from the AIV and the MBD components but it can be easily extended to support additional
Trust Sources (e.g., trustworthiness evidence coming from an Intrusion Detection system). That
being said, the TAF component securely produces its Trust Opinion Verifiable Credential if and
only if the AIV is at a correct state and it securely transmits its attestation report. In parallel, the
MBD shall be also at a correct state and shall securely send its own misbehavior report. Last but
not least, the TAF component needs to securely obtain, store and use an anonymized credential
which preserves the component’s privacy when transmitting its information outside of the vehicle.
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Axiom: Trust Assessment Framework security requirement

Axiom 16 taf,DO,md, aiv, t, h, kAC : SecurelyProduceVCTAF (taf,DO) ⇔
CorrectState(taf) ∧ SecurelyProduceAttestationReportAIV (aiv,DO) ∧
CorrectState(md) ∧ SecureDataExchange(taf, aiv) ∧
SecureDataExchange(taf,md) ∧ KeySecurelyLoaded(kAC , t, h) ∧
AnonymizedCredential(kAC)

The TAF component taf securely produces its Trust Opinion Verifiable Credential for a data
object DO if and only if taf is at a correct state, aiv and md are at a correct state, they are
both able to transmit their input to taf and taf has securely acquired, stored and used an

anonymised credential for kAC to construct its verifiable credential.

Table 6.20: Secure creation of Misbehavior Report Verifiable Credential.

6.8 Modelling In-Vehicle Devices

Concerning the in-vehicle CONNECT ecosystem, one key aspect that we need to capture in
these security requirements is the ECU device life-cycle. In general, an important parameter
that needs to be taken into account is the fact that ECU devices vary with respect to resources
and can have different cryptographic capabilities. Therefore, the security requirements need to
cover all types of devices that are provisioned to be securely on-boarded. It is worth mentioning
that N-ECU devices that are not equipped with any RoT and any built-in cryptographic capabil-
ities are considered out of scope of this security modelling since, by default, they can provide
trustworthiness evidence with the appropriate signatures but not in a verifiable manner. Thus
the CONNECT TAF will either not accept such trust sources or will process them with very low
confidence resulting in a Trust Opinion with a high degree of uncertainty.

Concerning the ECU device life-cycle, it is essential that the axioms define the prerequisites for
achieving the secure on-boarding of the devices. To that extent, we use a trusted Attestation
Server AS - running either in the backend or within the Vehicle Manager - which verifies that the
devices have been securely launched and that the applications running on top of the devices
are certified by the OEM. In addition, we explore the requirements pertaining to the application-
related functionalities of such devices. The aforementioned functionalities focus on the secure
device-to-device and device to in-vehicle computer communication, as well as the secure trans-
mission of provenance information from the devices.

6.8.1 Secure On-boarding of a new device

Before starting the secure on-boarding of a device there needs to be an IAM component that is
already securely enrolled within the in-vehicle computer. In addition, the device needs to have a
valid TCB and prove to the Attestation Server AS that it has been correctly configured and boot
up. For TEE-enabled devices this can be achieved through the correct instantiation of the Enclave
while for devices that have a less capable HSM this can be achieved by the secure transmission
of a quote (e.g., TPM Quote) associated with a set of specific values stored in the HSM. The
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successful validation by the AS leads to the issuance of an AS-issued VC which certifies that the
device is launched with the correct application. This credential can be then used by the device
to communicate with the IAM application. Upon successful validation of that VC by the IAM, the
secure onboarding concludes with the establishment of secure communication between IAM and
the device (i.e., through the establishment of a pre-shared key). Thus, the necessary application-
related and CONNECT related keys are securely exchanged and stored in the device’s RoT . The
axiom 6.21 on the secure on-boarding process is presented below:

Axiom: Secure On-boarding of a new device

Axiom 17 d, iam, a, t, kAPP , kCONNECT : SecureOnboarding(d) ⇔
SecureEnrollment(iam) ∧ ApplicationInHost(a, d) ∧ CertifiedAS(d) ∧
SecureDataExchange(d, iam) ∧KeySecurelyLoadedIAM({kAPP , kCONNECT}, t, d)

Device d can be securely on-board in the in-vehicle computer if and only if there is an
IAM iam that is securely enrolled, the device has been certified by the attestation server
AS that the d is launched correctly with a certified application a and the device has
securely obtained and stored the necessary application-related kAPP and CONNECT -
related keys kCONNECT.

Table 6.21: Axiom for Secure On-boarding of a new device.

6.8.2 Secure In-vehicle communication

Upon the secure on-boarding, a device has securely obtained and stored all the necessary keys
to perform its functionalities. Axioms 6.22 identify possible data flows starting from a device
towards another device or a software component running within the in-vehicle computer. Firstly,
when it comes to the transmission of kinematic data from an edge device (e.g., Zonal controller
(ZC)) towards an in-vehicle software component (e.g., Facility Layer, AIV ) the data confidentiality
and integrity needs to be ensured. Given that the device is securely on-board and the recipient
software component is securely enrolled, the secure communication of kinematic data can be
established through the secure use of the respective cryptographic material issued by the IAM
component. Similarly, in the case of exchanging kinematic data between two securely-onboarded
devices (e.g., Lidar S-ECU and a Zonal controller (ZC)), the secure communication is achieved
through the secure use of the necessary cryptographic material. Finally, the third axiom refers
to the secure annotation of provenance data produced by a device. A device is able to securely
prove the authenticity of the provenance data if and only if the device is securely on-board and
it can securely use the respective cryptographic keys to compute the verifiable evidence (e.g.,
digital signature) over the provenance data.
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Axiom: Application-related functionalities of a device

Axiom 18 d, s : DeviceSendDataToApplication(d, s) ⇔
SecureOnboarding(d)∧(SecureEnrollment(s)∨SecureEnrollmentTCB−SW (s))∧
SecureDataExchange(d, s))

Device d can securely transmit kinematic data to a software component s running in the
in-vehicle computer if and only if d is securely on-board, s is securely enrolled and data
integrity and confidentiality is achieved during their communication.
Axiom 19 d1, d2 : DeviceSendDataToDevice(d1, d2) ⇔ SecureOnboarding(d1) ∧
SecureOnboarding(d2) ∧ SecureDataExchange(d1, d2))

Device (e.g., S-ECU) d1 can securely transmit kinematic data to another device (e.g.,
Zonal Controller) d2 if and only if both devices are securely on-board and data integrity
and confidentiality is achieved during their communication.
Axiom 20 d, kAPP , xPROV : AuthenticProvenanceData(d) ⇔
SecureOnboarding(d) ∧VerifiableEvidence(d, xPROV , kAPP )

Device d can securely produce authentic provenance statement xPROV related to kine-
matic data if and only if d is securely on-board and it securely computes a verifiable
evidence over xPROV , by securely using the respective keys kAPP .

Table 6.22: Axiom for device application-related functionalities.
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Chapter 7

Conclusion and Outlook

7.1 Contributions of CONNECT Deliverable D4.1

In D4.1, we documented a refined architecture that documents key components and their inter-
actions. This documents a bottom-up perspective: What components and services do we intend
to provide to ensure security of automotive workloads in general and the CONNECT usage sce-
narios in particular.

In addition, we detailed user requirements. The user requirements that were described as ”user
stories” specify specific usages by users, groups, and roles that will be provided by the CONNECT
security architecture. This documents a top-down perspective where users express requirements
that can then be used to validate the architecture.

We documented initial high-level designs for our Gramine and Intel SGX Trusted Execution Envi-
ronments as well as required extensions. This will provide the security foundation of our vehicular
software stack.

Finally, we documented formalized security requirements on the architecture that will provide a
precise and unambiguous approach for validating the resulting concepts.

7.2 Open Questions and Next Step for Workpackage 4

After outlining the security architecture for CONNECT , this high-level architecture will be refined
in Deliverable D4.2. We aim at resolving the following open questions in D4.2:

Refining Architecture and User Stories Since we continue to explore the technology and align
with our user’s requirements, we expect to continue refining architecture and user stories.

Validating the TEE and Architecture: We plan to refine and test-drive the user stories to vali-
date the architecture and TEE. The goal is to provide details for each user story to ensure
that the architecture and TEE provides the required services.

Refined TEE Architecture We plan to provide more details on our TEE designs as well as the
new features migration and upgrade.

Mobile Edge Cloud (MEC) Our current focus was on the security architecture of the vehicle. In
D4.2, we plan to expand our scope to also cover the Mobile Edge Cloud (MEC).
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High-Level Designs We plan to provide more details on the envisioned design of the architec-
ture that has been documented in this deliverable.

Overall, we are within the envisioned time line for CONNECT and established a strong team that
is collaborating towards the CONNECT objectives.
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Appendix A

Appendix

A.1 Glossary and User Roles

A-ECU An A-ECU is an ECU with a TEE providing secure storage for keys and other data. it is
able to do asymmetric and symmetric cryptography.

AIV Attestation and Integrity Verification.

AMD SEV AMD Secure Encrypted Virtualization (AMD SEV) is a confidential computing tech-
nology offered by ARM CPU that protects virtual machines [1] .

Application Developer The Application Developer is responsible for designing and implement-
ing applications for the CONNECT framework.

AS Attestation Server.

ATL The Actual Trust Level (ATL) reflects the result of an evaluation of a trust proposition, for
a specific CCAM actor, as defined in a trust model managed by the CONNECT Trust As-
sessment Framework [11]. It quantifies the extent to which a certain node or data can be
considered trustworthy based on the available evidence.

C-ACC Co-operative Adaptive Cruise Control.

CCAM The European Commission has on 30th of November 2016 adopted a European Strategy
on Cooperative Intelligent Transport Systems (C-ITS), a milestone initiative towards cooper-
ative, connected and automated mobility. The objective of the C-ITS Strategy is to facilitate
the convergence of investments and regulatory frameworks across the EU, in order to see
deployment of mature C-ITS services in 2019 and beyond [9].

DAA Direct Anonymous Attestation.

DICE Device Identifier Composition Engine (DICE) is type of Trusted Execution Environment
capable of providing runtime integrity garantees for each one of the processes comprising
a software stack. This is achieved through the construction of conformity certificates. DICE
also provide advanced secure bootup capabilities for the host device 1.

1https://trustedcomputinggroup.org/work-groups/dice-architectures/
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DLT Distributed Ledger Technology.

ECU An electronic control unit (ECU), also known as an electronic control module (ECM). In
automotive electronics it is an embedded system that controls one or more of the electrical
systems or subsystems in a car or other motor vehicle.

Enclave Intel SGX is a TEE provided by Intel CPUs that allows to execute a user-space process
within a hardware-protected execution environment that is called enclave.

ETSI European Telecommunications Standards Institute.

FL The Facility Layer (FL) manages the (kinematic) data stemming from the in-vehicle sensors
by relaying them to all components of the Vehicle Manager that have subscribed to re-
ceive them. These are essentially the: (i) CAM/CPM Encoder/Decoder component that
will start the construction of the respective V2X messages (e.g., CAM, CPM) to be broad-
casted either following the currently ETSI specified standards or including also the Verifiable
Presentations (VPs) comprising the trust-related information outputed by the TCH (i.e., T-
CAM/T-CPM messages), (ii) CCAM Application module for constructing the local view of
the vehicle’s vicinity towards supporting the decisions making process of the service (e.g.,
breaking, changing lanes, etc.), (iii) the Misbehavior Detection service for checking the
vercity of the measures kinematic data through a series of plausibility checks, and (iv) Trust
Assessment Framework (TAF) for associating a Trust Opinion to each data object. It is im-
portant to highlight that the FL doesn’t perform any processing or checks to the received
data. Any verification controls, especially for asserting to the integrity of the data and its
safety in the context of been signed and processed by only “certified” applications is per-
formed by the IAM.

Group Signature A group signature allows a group member to digitally sign a message while
staying anonymous within that group [10].

HSM Hardware Security Module.

IAM Identity and Authentication Management.

IMA Intersection Movement Assistance.

Intel TDX Intel Trusted Domain Extensions (Intel TDX) is a confidential computing technology
offered by Intel CPU that protects virtual machines [27] .

IoT Internet of Things.

KRPE The Key Restriction Usage Policy Engine (KRPE) is a CONNECT newly developed con-
cept for enabling the vision of local attestation. This, essentially, allows for the verification
of an extended set of device characteristics (i.e., device integrity, safety, etc. depending
on the type of trust properties considered as part of the respective trust model) without the
need to disclose the actual attestation evidence. The verification ofushc values that actually
represent the current state of the device, is checked against a policy that binds the usage
of a signing Attestation key only in the case where the device is at an expected state. Thus,
a Verifier can check the validity of the transmitted signature to assert on the correct state of
the host device.
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Manifest File The Manifest File of SGX that specifies the hash value and policies of an applica-
tion to be executed within an SGX enclave. For integrity-protection, the manifest is signed
by the Application Developer .

MBD The Mis-behaviour Detector (MBD) component monitors the data from the vehicle and from
elsewhere (from CPM/CAM messages) and looks for anomalies. If these are detected is
sends mis-behaviour reports to the TAF and outside of the vehicle. Reports for the TAF will
be ‘normally’ signed, while those being sent outside will be anonymously signed.

MEC The MEC serves a number of functions. It makes more powerful computing resources
available to vehicles. These resources are provided close to the edge of the network so that
calculations can be ‘outsourced’ by the vehicles and still meet the necessary low latency
requirements. It can also combine information from vehicles in its vicinity to produce a more
detailed map of their positions and trajectories and feed this back to them together with its
assessment of their trustworthiness.

N-ECU An N-ECU is a ECU with no cryptographic capabilities so, no trusted computing base
(TCB), no secure storage for keys or other data.

OEM An Original Equipment Manufacturer. In the context of CONNECT the OEM is the vehicle
manufacturer who, often in association with a Tier 1 supplier, designs, assembles, markets
and sells the vehicle.

OS Operating System.

PCA The Pseudonym Certification Authority (PCA) is a trusted entity providing short-term anony-
mous credentials to on-boarded Vehicles. This is part of the ETSI standardized public Key
Infrastructure (PKI) [13] for enabling the secure and privacy-preserving V2X communica-
tion.

PKI Public Key Infrastructure.

PUF Physically Unclonable Function.

RoT The (Hardware) Root of Trust (RoT) is the minimal set of security guarantees usually pro-
vided by the hardware that is sufficient to guarantee the security of a larger TCB.

S-ECU An S-ECU is an ECU with secure storage for keys and other data, possibly a System on
Chip (SoC) with an HSM. It can only do symmetric crypto.

SDK Software Development Kit.

SGX Intel SGX is a hardware feature of Intel CPUs that provides a TEE for user-space ap-
plications on Intel CPUs. The goal is to protect an application from unauthorized access
or modification by any component outside the TEE. I.e. neither the operating system nor
other untrusted applications should be able to breach the confidentiality or integrity of the
protected application.
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SoC A system on a chip or system-on-chip (SoC) is an integrated circuit that integrates most or
all components of a computer or other electronic system. These components almost always
include on-chip central processing unit (CPU), memory interfaces, input/output devices and
interfaces, and secondary storage interfaces, often alongside other components such as
radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.

TAF The TAF component does the trust assessments and forms trust opinions on the vehicle and
data. The trust opinion on the data is sent outside the vehicle and needs to be anonymously
signed.

TAR The Trust Assessment Request (TAR) is the triggering point, initiated by a CCAM applica-
tion, for requesting from the CONNECT Trust Assessment Framework a trust opinion on
the data exchanged within this specific service.

TCB The Trusted Computing Base (TCB) of a computer system is the set of all hardware,
firmware, and/or software components that are critical to its security, in the sense that bugs
or vulnerabilities occurring inside the TCB might jeopardize the security properties of the
entire system. By contrast, parts of a computer system that lie outside the TCB must not be
able to misbehave in a way that would leak any more privileges than are granted to them in
accordance to the system’s security policy.

TCH The Trustworthiness Claims Handler (TCH) is the component responsible for sharing all
trust-related information outside the Vehicle in a privacy-preserving manner. This data bun-
dle (encoded in the context of a VP) comprises Trustworthiness Claims (TCs), the Trust
Opinion (produced by the TAF) and the Misbehavior Report (produced by the MBD). The
TC is usually produced (by the Attester) so as to provide trustworthiness evidence (“Trust
Source”) that can be used for appraising the trustworthiness level of the Attester in a mea-
surable and verifiable manner. Measurable reflects the ability of the TAF to assess an
attribute of the Attester against a pre-defined metric (e.g., RTL) while verifiability highlights
the need for all claims to have integrity, freshness and to be provably & non-reputably bound
to the identity of the original Attester. Examples sets of TCs might include (among other at-
tributes) evidence on system properties including: (i) integrity in the context that all transited
devices (e.g., ECUs) have booted with known hardware and firmware; (ii) safety meaning
that all transited devices are from a set of vendors and are running certified software appli-
cations containing the latest patches and (iii) communication integrity.

TEE A Trusted Execution Environment allows to execute applications while enforcing well-
defined security policies for a given application. An example is SGX .

TEE-GSE The TEE Guard Security Extensions (TEE-GSE) is the set of security controls, devel-
oped within CONNECT, for supporting the secure life-cycle management of a CCAM actor:
from the secure on-boarding and enrollment of all CCAM applications/services, instan-
tiated in the vehicle and/or MEC, and CONNECT -related security components including
the establishment of the necessary cryptographic primitives (for their later interactions with
other CCAM actors via secure and authenticated communication channels) to the run-time
monitoring and extraction of system measurements/properties, serving as trustworthi-
ness evidence, and reaction policy enforcement mechanisms to any indication of risks
and changes in the trust state of a device (state migration of a device).

Tier 1 A Tier 1 supplier directly supplies OEMs with components that are ready for installation
into the vehicle. They work closely with the OEM at all stages of a vehicle’s development.
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The Tier 1 supplier may well work with several manufacturers on the development of their
vehicles. The Tier 1 supplier will obtain the components that they need from Tier 2 suppli-
ers.

Tier 2 A Tier 2 supplier provides components to the Tier 1 suppliers and is the next level in
the supply chain. Tier 2 suppliers may not just provide components for the automotive
industry, but other industries as well. For CONNECT we focus on the suppliers of ECUs
(micro-controllers) used in the vehicle and their role in providing identity keys for them.

TPM Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international standard
for a secure crypto processor, a dedicated micro-controller designed to secure hardware
through integrated cryptographic keys. The term can also refer to a chip conforming to the
TPM Standard of the Trusted Computing Group[26].

VC Vehicle Communication (V2X) This provides communication facilities for the vehicle. Con-
nectivity – automotive ethernet, 5G, V2X.

VMM Virtual Machine Monitor.

VP The Verifiable Presentation (VP) is the data structure used for disclosing only a subset of
the trust-related information needed for the receiving entity to evaluate the trust level of
the originator. This allows the TCH to construct data bundles that hold the Trust Opinion,
Misbehavior Report and “abstracted” attestation assertions, as described in D5.1 [12].

Zonal controller (ZC) The Zonal controller (ZC) is an A-ECU that acts as a gateway between
the ECUs and the vehicle computer. As an A-ECU they will have a TEE providing secure
storage for keys and other data and will be able to do asymmetric and symmetric cryptog-
raphy.
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