
D4.2:Virtualization- and Edge-based
Security and Trust Extensions

Project number: 101069688
Project acronym: CONNECT

Project title:
Continuous and Efficient Cooperative Trust Management for
Resilient CCAM

Project Start Date: 1st September, 2022
Duration: 36 months

Programme: HORIZON-CL5-2021-D6-01-04

Deliverable Type: R – Report
Reference Number: D6-01-04 / D4.2 / 1.02 April 4, 2024

Workpackage: WP 4
Due Date: February 29, 2024

Actual Submission Date: March 11, 2024

Responsible Organisation: INTEL
Editor: Matthias Schunter

Dissemination Level: PU – Public
Revision: 1.02 April 4, 2024

Abstract:

Deliverable D4.2 documents the high-level design of the complete CON-
NECT security architecture as developed by Workpackage WP4. Com-
pared to D4.1 we refine and add users stories and designs for the Multi-
Access Edge Cloud (MEC). We also add detailed cryptographic protocols
that implement the trust assessment of the services of CONNECT . Fi-
nally, we detail the concepts and interactions for secure migration and up-
grade of TEE-protected workloads. This is the technical foundation for Se-
cure Task Offloading. The key questions that this deliverable answers are
“How can the Multi-access Edge Cloud (MEC) be architected to provide
robust security and privacy guarantees?”, “How can cryptography help to
remotely assess trust of services while maintaining sound privacy guar-
antees?”, and “How can vehicle and edge collaborate while maintaining
security?”.

Keywords: Trusted Execution Environment, TEE, Multi-Access Edge Cloud, MEC,
TEEGuard, CCAM, Security Architecture

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or CINEA.
Neither the European Union nor the granting authority can be held responsible for them.

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Editor
Matthias Schunter(INTEL)

Contributors (ordered according to beneficiary numbers)

Anna Angelogianni, Nikos Fotos, Stefanos Vasileiadis, Thanassis Giannetsos,
Vasilis Kalos (UBITECH)
Panagiotis Pantazopoulos, Pavlos Basaras (ICCS)
Dimitrios Stavrakakis, Dmitrii Kuvaiskii, Matthias Schunter, Sergej Schumilo (INTEL)
Christopher Newton (SURREY)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author‘s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

CONNECT D4.2 PU – Public Page I

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Executive Summary

The current deliverable highlights the advances regarding the security and trust extensions
proposed by CONNECT , aimed at facilitating the collaborative trust assessment vision; hence,
achieving the overall goals of the project. Notably, D4.2 builds upon its predecessor to enhance
the functionalities of the overarching CONNECT Trusted Execution Architecture, extending
its applicability to cover the Multi-Access Edge Computing (MEC) side. MEC plays a crucial
role for extending the stand-alone vehicle domain to safe and security solutions distributed from
the Vehicle (far-edge) to Edge and Cloud facilities as an enabler of highly automated driving
functions. Nevertheless, the addition of MEC in the CCAM continuum may introduce new attack
vectors; hence, advanced protection mechanisms are needed.

This also materialises the vision of task offloading entangling the operational planes of the en-
tire CCAM continuum. The concept of task offloading holds a significant role in the CONNECT
vision. It involves the shift of tasks from the vehicle(s) to the infrastructure where the computa-
tional resources are typically richer. Subsequently, the result of the task execution may need to
be returned to the original vehicle (and/or neighbouring vehicles), or, trigger other actions (such
as the communication to a cloud CCAM server). Besides adequate orchestration capabilities
for managing the communication of a high influx of data, that might be needed for supporting
the task offloading process, this also requires a high degree of network function security: Tasks
should be offloaded to target nodes that can exhibit the required level of trust for protect-
ing its internal operations. Such security assurances can then directly translate into trust to the
performed (offloaded) computations so that they can be consumed by the Vehicle.

In order to extend this protection to cover the MEC infrastructure where CCAM services are
deployed, CONNECT builds on top of a trust anchor as established for the far edge. This ex-
tension facilitates the secure deployment and execution of services at the MEC level, leveraging
a Secure Element. For the purposes of CONNECT demonstrators, the adopted technology is
Gramine, which is based on Intel SGX, while for the launching of secure enclave, enclave-cc
technology is utilised. It shall be underlined, though, that CONNECT maintains a high degree of
interoperability and agility with any type of Root-of-Trust that demonstrates the baseline of Secure
Storage, Measurement and Reporting capabilities [12].

Following this expansion to the MEC, the functional specifications, as it pertains to the Trusted
Execution Architecture, are enriched to support trust assessment and trust quantification in the
context of a more perplexed environment, constituted by services deployed both at the far edge
and the edge side. The deliverable outlines the lifecycle of containerised services, providing in-
depth information on secure launching, deployment, upgrade and migration processes, further
capturing the internal operations of the Trusted Computing Base.

Furthermore, this deliverable elaborates on the cryptographic primitives, adopted by CONNECT
and designed to specifically accommodate the needs of the CCAM landscape at the far edge
side. These needs are consistent with the existence of different types of ECUs possessing vary-
ing cryptographic capabilities and trustworthiness evidence stemming from multiple trust sources.
Additionally, it addresses privacy-preserving concerns when sharing this evidence with other ve-
hicles or the MEC. The respective protocols covering the MEC side will be elaborated in D4.3 [18].

CONNECT D4.2 PU – Public Page II

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Contents

1 Introduction and Overview 1

1.1 Relationship with other Workpackages & Deliverables 3

1.2 Scope and Purpose . 5

1.3 Deliverable Structure . 5

2 Extending the CONNECT Trusted Execution Architecture to the MEC 7

2.1 CONNECT Trusted Computing Base & Building Blocks 9

2.2 CONNECT TEE Guard Extensions & Building Blocks 13

2.3 The CONNECT Trusted Execution Architecture 15

2.4 CONNECT MEC Information Flows . 18

3 Secure Container Lifecycle Management on Cloud/Edge/Vehicle Continuum 21

3.1 Container Management in CONNECT Far-Edge & MEC 21

3.2 Docker-Style Container Management for TEE-protected Workloads 22

4 Refined User Stories for Security-Critical Features of CONNECT 31

4.1 Introduction to the CONNECT User Stories . 31

4.2 User Stories for Preparing the Vehicle . 32

4.3 User Stories for Assessing Trustworthiness of Vehicle or Services 37

4.4 User Stories for Re-Establishing Trustworthiness 43

4.5 User Stories for Workload Protection Using a Trusted Execution Environment . . . 44

4.6 User Stories for Creating a Trusted Execution Environment 47

4.7 Stories for Upgrading and Migrating Protected Workloads 48

4.8 User Stories for Protection of Workloads on a Mobile Edge Cloud (MEC) 50

5 The CONNECT Cryptographic Protocols for Enabling Dynamic Trust Assessment 58

5.1 Determinants Behind CONNECT Crypto Agility 61

5.2 CONNECT Crypto Primitives & Building Blocks 65

5.3 Preparing the Vehicle for the CCAM Continuum 68

5.4 CONNECT Configuration Integrity Verification as a Trust Assessment Source . . 74

CONNECT D4.2 PU – Public Page III

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

5.5 Constructing Zero-Knowledge Trustworthiness Claims 85

5.6 Anonymising Threshold Signatures . 89

5.7 Threshold Update Delegation . 94

6 Securing the Edge Components of CONNECT 102

6.1 High-level Architecture for Secure Migration of Intel SGX and Gramine 102

6.2 Required Infrastructure Services . 105

6.3 Implementing TEE Security Guarantees . 109

7 Conclusion and Outlook 114

7.1 Open Questions and Next Steps for Workpackage 4 115

A Design Details of the CONNECT Trusted Execution Environment 117

A.1 The Intel SGX Trusted Execution Environment used in CONNECT in Detail 117

A.2 Gramine - A Library OS for Seamless Protection of CCAM Applications 121

B Glossary and User Roles 131

Bibliography 138

CONNECT D4.2 PU – Public Page IV

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

List of Figures

1.1 Relation of D4.2 with other Workpackages and Deliverables. 3

2.1 Key Restriction Usage Policy Engine. 9

2.2 Attestation Tracer . 11

2.3 MEC High-Level Architecture . 14

2.4 Kubernetes-based Container Architecture . 16

2.5 MEC Information Flows . 19

3.1 Integration points of Enclave-CC with Gramine. 24

3.2 Enclave-CC architecture and flows. 27

4.1 CONNECT In-Vehicle Logical Architecture capturing all functional specifications
depicted through the described user stories. 33

4.2 CONNECT CONNECT In-Vehicle Implementation Architecture depicting detailed
positioning and interactions between the CONNECT TEE-GSE components. De-
tailed version of Figure 4.1 on page 33. 34

5.1 Initialisation and Preparation for Integration for an S-ECU. 69

5.2 Integration into the vehicle for an S-ECU. 70

5.3 Initialisation and Preparation for Integration for an A-ECU. 71

5.4 Integration into the vehicle for an A-ECU. 73

5.5 CONNECT Verifiable Key Restriction Policy Update: JOIN 81

5.6 CONNECT Verifiable Key Restriction Policy Update: Run Time Attestation 83

5.7 High-Level Flow of Actions of CONNECT Threshold Anonymous DAA scheme for
constructing anonymous trustworthiness claims comprising the “harmonized” at-
testation attributes extracted from the Enhanced CIV mechanism 86

5.8 Threshold DAA Issue and Sign operations. 90

5.9 Threshold DAA Verify operations. 91

5.10 Threshold DAA Join. 92

5.11 Threshold DAA Sign. 94

CONNECT D4.2 PU – Public Page V

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

6.1 High-level Architecture for Migrating intel SGX Enclaves and the Gramine Li-
braryOS. 103

6.2 Using Trusted Monotonic Counter (TMC)aaS to prevent multiple copies of a Sin-
gleton Service. 110

6.3 Using TMCaaS to Prevent Rollback Attacks. 112

A.1 Two approaches to developing SGX applications: manual partitioning and using a
Library OS. 120

A.2 Gramine architecture (with SGX backend). 123

A.3 Features of the Gramine LibOS component. 125

A.4 Features of the Gramine SGX backend component. 127

A.5 Gramine SGX remote attestation using DCAP flows. 129

A.6 Gramine SGX remote attestation: RA-TLS X.509 certificate. 130

CONNECT D4.2 PU – Public Page VI

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

List of Tables

4.1 Updates to the CONNECT set of User Stories compared to D4.1. 32

5.1 CONNECT Protocols & Crypto Primitives used to support the User Stories given
in Chapter 4. 61

5.2 S-ECU keys and their use. 72

5.3 A-ECU keys and their use. 74

5.4 Notations used in the description of the CONNECT CIV scheme. 76

5.5 Notations used in the description of the CONNECT threshold DAA scheme. . . . 88

7.1 CONNECT Trust Extensions Implementation Road-Map. 116

CONNECT D4.2 PU – Public Page VII

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 1

Introduction and Overview

In the first round of activities revolving around the design of “secure chip-to-cloud” solutions, en-
abling the trust assessment and quantification of CCAM ecosystems (documented in D4.1 [10]),
we focused primarily on the vehicles (i.e. the far-edge). There we presented an initial descrip-
tion of the CONNECT Trusted Computing Base (TCB), and the CONNECT Trusted Execution
Architecture along with the necessary building blocks and their functionalities towards the se-
cure lifecycle management of all in-vehicle (HW and SW) elements comprising an automotive
service. At the core of this architecture, is the establishment of a chain-of-trust throughout the
entire service stack of the host vehicle: from the device hardware, to the application and execu-
tion environment been instantiated in the Vehicle Computer. A trust pillar in this context is the
anchoring of all services to a Root-of-Trust (instantiated in resource-capable in-vehicle elements,
e.g., Gramine TEE) capable of expressing trust in a verifiable manner through the provision of
security/trustworthiness claims. These claims include assertions on the integrity (and other
trust properties of interest including resilience, robustness, safety, etc., as defined in D3.1 [9]) of
the target device and its correct configuration and execution state to be used as a trust source for
inferring (and reasoning on) the Actual Trust Level (ATL) of any in-vehicle node and data item.

Building on this initial trust execution architecture, the objective of the present deliverable is to
describe how the CONNECT TCB extends to also capture the requirements of the Multi-access
Edge Computing (MEC) layer of the CCAM ecosystem, by demonstrating the necessary refine-
ments that have to be added to the CONNECT TCB. As mentioned in D2.1 [12], the MEC in-
troduces several advantages by providing vehicles with seamless access to significant
computational capabilities, addressing cases where the vehicle’s resources are insufficient.
This enhancement of the operational landscape translates into deploying services at both sides
of the spectrum (i.e., far-edge and edge) and/or offloading/migrating resource-intensive tasks
from the vehicle to the MEC so as to benefit from the rich (edge-deployed) computational re-
sources. The motivation to employ task-offloading operations is the increased in-vehicle com-
putation needs and the ever-increasing complexity/computational requirements of the CCAM
applications. In view of the higher automation level of connected vehicles (mainly with the in-
clusion of advanced ML-based, cooperative perception and positioning capabilities [37]), further
computational needs are posed. Even overcoming the proliferation (rate) of capable in-vehicle
devices/hardware [31]. Nevertheless, it should be clarified that this updated operational model,
incorporating the MEC, may further introduce new attack vectors. Such attacks vectors are elab-
orated in the 5GAA paper [2] where the CONNECT consortium provided detailed definitions of
threat models as well as the security boundaries identified for the MEC system and the services
that the MEC hosts for supporting the operation of connected vehicles.

CONNECT D4.2 PU – Public Page 1

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

As a result, sufficient runtime security controls are needed, to assess and establish trust,
not only among vehicles but also to the virtualised infrastructure where the services are
deployed; i.e., where the CCAM- or CONNECT - related trust services are instantiated. The
integration of a Trusted Execution Environment (TEE) into the MEC enables all operations
to be protected, including the continuous and evidence-based trust assessment of any
CCAM (SW and HW) element. This integration of trusted and confidential computing provides
strong integrity guarantees on the infrastructure where services are running and containerised
services have been deployed; hence, trust assessment is also extended to consider the trust
state of elements deployed across the entire continuum - from the far edge (Vehicle) to the edge
(MEC) and the Cloud. Notably, the CONNECT trust execution technology realised on the MEC
environment is essentially the same to (subsequently) be used to safeguard the (CCAM) cloud-
based services.

This document delves into the essential refinements to the TCB for also enabling these additional
trust extensions to MEC- and Cloud- deployment environment: These enhancements facilitate the
implementation of security controls, ensuring the secure execution of applications through
the trust assessment of virtualised infrastructure where application servers are deployed.
Emphasising the significance of vehicle-to-everything trust assessment, encompassing the eval-
uation of the virtualised infrastructure beyond the boundaries of a vehicle, as defined in D3.2 [15],
remains a critical aspect.

The distinguishing factor in ensuring the integrity of services within a virtualised infrastructure,
as opposed to the case when executed in a vehicle, lies in the ability to verify the integrity of
the entire stack of the virtualised infrastructure. As detailed in Chapters 2 and 3, CON-
NECT primarily utilises Kubernetes as a prominent orchestration technology for demonstration
purposes [13], while maintaining interoperability agnostic to the technology employed for service
orchestration. Towards this direction, D4.2 showcases the deployment of legacy containers
using Kubernetes, subsequently converting them to confidential containers (according to
their security requirements) with a focus on ensuring the integrity of the entire process and
the underlying networking stack. This also constitutes another core innovation of CONNECT
as it extends the ETSI standardised Levels of Assurance (LoA) classification model [24], for virtu-
alised infrastructures, to capture the intricacies of MEC environments for supporting the life-cycle
of connected vehicles. This enriched classification allows for a more granular scale of trust that
can be assessed based on the provided security claims by the underlying CONNECT TCB.

The MEC facilitates the deployment of various workloads, including CCAM services and other
application workloads. These workloads can operate in a non-secure mode or be converted
into secure enclaves based on their requirements. They include containerised services, some
of which are instantiated on the MEC, while others are deployed on the vehicle. Additionally,
auxiliary functions within the vehicle may process kinematic or perception data for these services.
To automate and streamline the deployment process, as outlined in Chapters 2 and 3, the
deployment of a containerised service, whether on the MEC, Cloud or the Vehicle, follows a
common approach. The key requirement is that the infrastructure (i.e, the In-Vehicle computer,
the MEC or even the Cloud) must be equipped with a Root of Trust (RoT), enriched with the
CONNECT TCB. This operational model spans across the whole compute continuum, (from
the far-edge to the edge and even up to cloud-based services), adopting a unified deployment
process for transparency and continuum-wide automation.

It should be clarified that even though in the rest of the document we refer to specific technologies
employed for the orchestration, launching and support of both pre-existing legacy as well as
newly designed TEE-enhanced containers, that are based on a specific Root of Trust (RoT) (i.e.,

CONNECT D4.2 PU – Public Page 2

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

WP4

WP5

D4.2 D4.3

WP2 WP3

CONNECT Trust
Assessment Methodology ,
Evidence , and Architecture

of

CONNECT
reference

architecture and
use case

descriptions

WP6

CONNECT TEE Extensions
for instantiating the secure

containerized services to be
deployed on the MEC;

Security mechanisms for
supporting task offloading

Complete Architecture and
Design; Definition of the trust

models and security
requirements for the TCB and

crypto

D4.1
Core Security Architecture of

CONNECT. TEE and
Continuous Trust Assessment

of Vehicle

Definition the
CONNECT
Use Cases
and their

requirements

Figure 1.1: Relation of D4.2 with other Workpackages and Deliverables.

Intel SGX) and a TEE technology (i.e., Gramine), the CONNECT protocol designs prioritise
technology neutrality. This ensures compatibility with other CoCo technologies and RoTs, as
long as they follow the Root of Trust for Storage, Reporting, and Measurement principles [12].

1.1 Relationship with other Workpackages & Deliverables

The documentation of the detailed overarching Trust Execution Architecture is a core building
block for supporting the first-of-its-kind CONNECT Trust Assessment Framework [9, 15] captur-
ing the trust model and complex trust relationships that need to be continuously assessed towards
the materialisation of a trusted CCAM continuum. This enables the transformation of (zero-trust)
CCAM service networks into “trustful service unions” featuring not only strong (end-to-end) se-
curity but also other core trust properties including integrity, resilience, robustness, safety, etc.
This is the core focus of Deliverable D4.2 putting forth the detailed design of the first version
of CONNECT trust extensions for enabling the safeguarding of all core in-vehicle components
comprising a CCAM service function chain.

Figure 1.1 depicts the direct and indirect relationships of D4.2 to the other Tasks and Work Pack-
ages (WPs). WP2 provides the high-level requirements and overall architecture as inputs. As
aforementioned, WP4 then refines and extends this high-level architecture with a focus on se-
curity. In D4.1 we concentrated upon Hardware-based Trusted Execution and continuous trust
assessment for the vehicle. Now, in D4.2, we document the complete security architecture of
CONNECT . Compared to D4.1, this adds users stories and designs for the MEC. It also adds
the detailed cryptographic protocols that are required for trust assessment of the services of
CONNECT . Finally, it details the concepts for secure migration and upgrade of TEE-protected
workloads, which are the technical foundation of Task Offloading.

CONNECT D4.2 PU – Public Page 3

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

More specifically, D4.2 provides the detailed description of a new set of trusted computing ca-
pabilities towards the runtime integrity verification of a component (such as a electronic control
unit (ECU)) through abstractions, called policy-restricted attestation keys (Section 5.4.2.2), that
allow for the verification of the component’s integrity correctness in a zero-knowledge manner;
i.e., without disclosing any details on the actual configuration or operational profile of the target
device. This functionality, together with those libraries offered for secure software upgrade and/or
state migration (as reaction policies to the change of a node’s trust level), comprise CONNECT ’s
TCB capabilities for supporting the operations of the Trust Assessment Framework: All attesta-
tion attributes constitute one of the trustworthiness sources based on which the TAF (as the core
WP3 artefact) calculates the Actual Trust Level (ATL) of a (SW and/or HW) element which leads
to the trust state characterisation of the target node. Thus, D4.2 provides one of the core building
blocks for supporting context-aware continuous trust assessment in (zero-trust) CCAM.

Furthermore, this deliverable sets the scene for the other core innovation of CONNECT towards
extending the standalone vehicle domain to safe and security solutions distributed from Vehicles
to MEC and Cloud facilities. Towards this direction, D4.2 provides the final and refined descrip-
tion of CONNECT ’s overarching Trusted Computing Base considering also the provision of the
necessary mechanisms for ensuring the secure life-cycle management of any CCAM (and be-
yond) service deployed on the MEC. This does not only include the runtime attestation of the
service itself (enacting upon the previously mentioned attestation procedures) but also captures
the integrity and resilience of all the MEC infrastructural elements as well as the SW components
running on them, and especially those facilitating the network orchestration plane. Attestation
of a virtualised infrastructure element (i.e., measurement and verification) leads to the ability to
establish information security assurance. This, in turn, constitutes another core trust source
based on which the vehicle can assess the level of trust it can put on the MEC to protect its
information and functional assets. All these capabilities set the scene for the detailed exper-
imentation and evaluation activities of all these trust extensions in the context of the envisioned
use cases on Intersection Movement Assistance, Collaborative Cruise Control and Slow-Moving
Traffic Detection (WP6).

This also materialises the vision of task offloading entangling the operational planes of the entire
CCAM continuum - from the Vehicle to the MEC and/or Cloud. The concept of task offloading
(see D5.1 [11] for definition and D5.2 [13] for a detailed description of CONNECT networking and
offloading capabilities) holds a significant role in the CONNECT vision. It involves the shift of tasks
from the vehicle(s) to the infrastructure where the computational resources are typically richer.
Subsequently, the result of the task execution may need to be returned to the original vehicle
(and/or neighbouring vehicles), or, trigger other actions (such as the communication to a cloud
CCAM server). Besides adequate orchestration capabilities for managing the communication of
a high influx of data, that might be needed for supporting the task offloading process, this also
requires a high degree of network function security: Tasks should be offloaded to target nodes
that can exhibit the required level of trust for protecting its internal operations. Such security
assurances can then directly translate into trust to the performed (offloaded) computations so
that they can be consumed by the Vehicle. Such strict security assurances are based on the
attestation mechanisms that are presented in this deliverable and will be further extended in
D4.3 [18] for MEC deployment environments.

CONNECT D4.2 PU – Public Page 4

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

1.2 Scope and Purpose

As aforementioned, the focus of this deliverable is twofold: (i) Extend the overarching CON-
NECT Trusted Execution Architecture to also account for the security and trust require-
ments of MEC deployments - characterised by the presence of edge computing infrastructure
hosting multiple MEC tenant application providers and application users. This culminates to the
description of the final version of CONNECT ’s TCB equipped with all trust extensions for allow-
ing the management of security claims as verifiable assertions on the trust state of any (SW
and/or HW) element deployed across the entire CCAM continuum, and (ii) Early design of the
novel CONNECT trust enablers and crypto primitives for supporting the in-vehicle operations
and trust calculations (based on the secure and privacy-preserving sharing of trust-related in-
formation and evidence). It further sheds light to the secure container life-cycle management at
the far-edge, edge and cloud continuum, as well as the cryptographic protocols, tailored to ac-
commodate the needs of the far-edge (i.e., vehicle) side. More specifically, the proposed designs
enable the evidence-based trust assessment, leveraging novel attestation mechanisms, including
a new variant of anonymised threshold signatures for the sharing of verifiable trustworthiness
evidence in a zero-knowledge manner. This scheme provides privacy-preserving exchange of
trustworthiness claims between the vehicle and other vehicles (in the vicinity) or the MEC. Fur-
thermore, the Configuration Integrity Verification (CIV) scheme is elaborated, equipped with Key
Restriction Usage Policies, that preserve integrity even in the in the case of a compromised (ve-
hicle or MEC container) host. In the final Deliverable D4.3, the consortium will document the
implementation and validation of these key components of the architecture and will proceed with
the documentation of the equivalent components as part of the secure MEC deployments.

1.3 Deliverable Structure

The remainder of this deliverable is structured in the following chapters:

Chapter 2 documents the revised and refined CONNECT trusted execution architecture. We
start by recapitulating the architecture of the core Trusted Computing Base (TCB) and building
blocks from D4.1. We then describe our new security architecture for container-based cloud
services on the MEC. Finally, we outline high-level information flows for the MEC.

In Chapter 3 we document the new design for secure and TEE-enhanced containers. Our goal
is to provide TEE-enhanced containers that can be seamlessly managed by Kubernetes while
maintaining security throughout their life-cycle. A specific challenge is to ensure proper protection
of security-critical state while a container is hibernated and then restarted at a later time.

Chapter 4 specifies revised and new ”user stories” that specify key behaviours of our architecture.
They document the requirements of different roles / user groups of the CONNECT Project. Each
user story outlines well-defined usages by given user roles / groups together with their security
and functional requirements. This serves as a high-level description of requirements that need to
be satisfied by the services and architecture that is provided by CONNECT .

In Chapter 5 we provide details on the cryptographic protocols that allow privacy-enhanced (re-
mote) trust verification of services.

In Chapter 6 we document design details on the MEC. This includes enhancements to the
Gramine library OS and additional services and protocols that are provided by the edge.

CONNECT D4.2 PU – Public Page 5

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

In Chapter 7 we conclude our findings and provide an outlook on the final deliverable D4.3 of
WP4.

We conclude the document with two appendices that provide additional design details on Intel
SGX (Appendix A.1) and the Gramine Library OS (Appendix A.2), a glossary, and a bibliography.

CONNECT D4.2 PU – Public Page 6

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 2

Extending the CONNECT Trusted
Execution Architecture to the MEC

This chapter presents the overarching CONNECT Trusted Execution Architecture including also
the extensions added for capturing the required security and trust models that arise from the inte-
gration of MEC deployments. Therefore, in what follows we delve into the architectural details of
CONNECT ’s TCB and its TEE Guard Security Extensions (TEE-GSE), focusing primarily on the
MEC aspect. In this context, Confidential Containers (CoCo) (as the adopted security technol-
ogy) offer the trust assurances, leveraging solutions such as the TEE , to prevent unauthorised
access or modification of applications and data while in use, thus, protecting against the
tampering of the infrastructure where the container is instantiated. This concept is specif-
ically useful when it comes to security-related and safety-critical applications, such as the ones
considered in CONNECT , being executed at the MEC-level. Furthermore, it entails the runtime
tracing capabilities for monitoring of a various system properties throughout the entire
automotive service software stack; i.e., from the host vehicle to the measurement of the sys-
tem when instantiating service containers and network functions on the MEC, determining the
integrity and origin of the deployed software. The provision of such granular tracing mechanisms
enable the secure state migration of an application from one device to another, as well as the se-
cure upgrade, as a reaction strategy to a change at the trust level of the stakeholder, as assessed
by the Trust Assessment Framework (TAF).

Verifying the integrity of the MEC infrastructure where services are deployed is important specifi-
cally in the case where the infrastructure may be operated by different MNOs, with varying levels
of assurances. These assurances are provided during service execution, reflecting the infrastruc-
ture capabilities based on the implemented security controls. The security controls determine
the trust level of a particular MEC Infrastructure, defining the trust level of this domain
(i.e., trust domain). Hence, the extraction of the MEC trustworthiness evidence contributes to
the assignment of a trust domain. An interesting research question beyond the scope of CON-
NECT is the establishment of a trust relationship between two domains, possessing different trust
levels. In the context of a vehicle, this challenge occurs when there is a need for seamless tran-
sition of a CCAM service provided by MEC provider A as the vehicle moves to MEC provider B,
commonly known as handover. This raises questions regarding the seamless preservation and
transfer of trust among MEC providers with different levels of trust.

The following chapters will dive into the security mechanisms offered by CONNECT and sup-
ported by the TEE-GSE to guarantee the secure management of containers (i.e., includ-
ing containers and confidential containers) throughout their lifecycle. This involves creating

CONNECT D4.2 PU – Public Page 7

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

fundamental cryptographic building blocks to protect the security and privacy of trustworthiness
evidence, depending on the specific requirements. Regarding the privacy requirements, as appli-
cable for the far-edge side, Chapter 5 of the present deliverable, details on the protocols created
to meet the functional specifications, as outlined in D4.1[10], regarding the harmonisation of trust-
worthiness evidence when it exits the vehicle.

All these operations are supported by CONNECT ’s two main trust anchors:

• CONNECT TCB: This constitutes the palette of security mechanisms and auxiliary pro-
cesses that are required by all components offering the envisioned secure life-cycle man-
agement schemes. They are those hardware-, software- and firmware-based services, that
are by default trusted, the combination of which is used towards the enforcement of a secu-
rity policy. In comparison to the architecture outlined in D4.1[10], the final view of the
TCB incorporates additional components, namely the Verifiable Policy Enforcer and the
Migration Service. These components are defined in the following paragraphs.

Part of CONNECT ’s TCB (as will be detailed in Section 2.1) comprises the: (i) tracing
capabilities, based on the newly developed TEE Device Interfaces (TDIs), with dedicated
APIs to be exposed for the continuous monitoring and fetching of evidence and Trustwor-
thiness Claims respectively, used in the context of a trust model for a specific set of trust-
properties (i.e., integrity, resilience, etc.), (ii) key management module for setting up and
governing the use of all application- and security-related keys that need to be setup during
the secure deployment of a container and its service(s) (see Section 2.3.1), and (iii) key
usage restriction policy engine for managing the construction/deployment and enforce-
ment of the necessary policies, binding the use of keys to the expected state of the enclave,
(iv) verifiable policy enforcer (VPE) for verifying that the latest-deployed the key usage re-
striction policy is associated to the correct (static) properties of the target application; thus,
past policies associated with the same target application are being characterised as obso-
lete to avoid attacks based on past versions, and the (v) migration service for mediating
the migration process of an enclave from one hot to another and validating the authenticity
of the migrated data (see Section 2.3.3).

The TCB must always behave as expected, otherwise, there is a risk of compromising the
overall security posture of the target system, including the main trust assessment mech-
anism offered by CONNECT , which will lead to invalid trust calculation. It is assumed as
trusted by default, with the support of the underlying RoT . As described in [10], the end-
most goal is to minimise the TCB so as to be able to to meet the requirements while
functioning in zero-trust environments. However, the incorporation of the MEC into the
broader CCAM continuum necessitates a more dynamic and modular TCB. This means
that the size of the TCB should be adjustable based on the service requirements and the
underlying infrastructure. For instance, the instantiation of the VPE might be required in
multiple instances when relevant to MEC operations, whereas a single instance may suffice
for the far-edge. This dynamicity allows for a flexible adaptation of the TCB to varying op-
erational contexts (i.e., different TCB specification per service). More detailed information
about the TCB can be found in Section 2.1.

• CONNECT TEE Guard Extensions (TEE-GSE): The TEE-GSE provide isolation at an
application-level, leveraging secure enclaves. In the MEC the TEE-GSE are deployed
within the confidential containers, offering the necessary security guarantees; thus pro-
viding the functionality of secure life-cycle management processes. Following the notion of
the confidential containers, the TEE-GSE are built on top of the TCB (each container will

CONNECT D4.2 PU – Public Page 8

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure 2.1: Key Restriction Usage Policy Engine.

be equipped with its own CONNECT TCB), enabling continuous interaction with the trust
anchor, so as to then be able to provide the necessary evidence so that all requesting com-
ponents will be able to perform the operations described in the section 2.4. More detailed
information regarding the TEE-GSE can be found in Section 2.2.

Recall that while CONNECT protocols have been instantiated over the Gramine technology, they
remain agnostic to the type of secure element used as long as the baseline of characteristics for a
Root-of-Trust are offered: Root of Trust for Storage, Reporting, and Measurement [12]. Likewise,
even though for the purposes of our demonstration activities enclave-CC is leveraged, as it is
based on the same type of TEE technology and leverages Gramine, the protocol designs for the
MEC are agnostic to the employed technology and are also applicable to other CoCo technologies
such as ENARX. In the same line of generality of CONNECT schemes, the same notion further
applies for the adopted orchestration technologies. Even though Kubernetes is leveraged due
to its prominence, CONNECT remains agnostic to the specific technology and may operate in
tandem with any orchestration framework.

2.1 CONNECT Trusted Computing Base & Building Blocks

The CONNECT TCB serves as the foundation for the execution of critical tasks as it pertains
to security-related functions and trust assessment. Considering also the design choices (i.e.,
minimised overhead), the TCB comprises the minimal set of components whose correct operation
is a prerequisite for supporting the security of the overall system. The following paragraphs delve
into the exact building blocks that form the CONNECT TCB along with their functionalities. It
is worth mentioning, as it was elaborated on D4.1[10], that the CONNECT TCB may refer both
to the far-edge, and the edge, ranging from the ECUs all the way up to the services that are
instantiated on the MEC. It is important to highlight that the type of TCB that is instantiated is
resource-dependant. As a result, there is a distinction between different ECUs (i.e., A-ECUs,
S-ECUs) and the TCB that resides on the MEC, based on their cryptographic capabilities. The
following descriptions are mainly focusing on the A-ECUs and the MEC-based TCB, that have
the capacity to support such operations. For the case of S-ECUs that lack the resources, the
TCB is restricted solely to the secure storage of the employed cryptographic keys.

• Key Management System: It is an integral component of the CONNECT TCB, responsible
for the secure generation, storage and management of cryptographic keys. In CONNECT

CONNECT D4.2 PU – Public Page 9

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

the security requirements are not restricted to the creation and secure storage of the secret
cryptographic keys, but further cover the compilation of the chosen cryptographic algo-
rithms during the execution of an attestation task, as requested by the Trust Assessment
Framework (TAF).

• Key Restriction Usage Policy Engine (KRPE): Enables the vision and core innovation
of CONNECT towards local attestation, where a Prover can attest to the integrity of its
configuration and behavioural state to a Verifier, without the need to disclose any of its im-
plementation details. This is facilitated through the use of policy-restricted attestation
keys that can be used for producing signed attestation attributes only when a node’s con-
formance can be verified by the local Attestation Agent. The Key Restriction Usage Policy
Engine (KRPE), a proposed TCB component in CONNECT , supports a collection of log-
ical equations constructed from these assertions. Figure 2.1 presents a logical equation,
where D1, D2, D3 and Valid Policy are the hash digests of the inputs of the logical ports.
The Key Usage Restriction Policy Engine (KRPE) processes these hash digests of inputs
through logical ports to determine the validity of a live Key Restriction Usage Policy. To
seamlessly integrate the KRPE into CONNECT ’s TCB, it is conceived as a child process
spawned by the device’s Key Manager. This arrangement ensures that the KRPE operates
entirely within the Trusted World (enclave), upholding communication integrity between the
Key Manager, which requests key authorisation, and the KRPE itself. Furthermore, the
CONNECT TCB needs to be configured in a way that strictly allows entity-creators or ad-
ministrators to define the set of actions that can be performed before an action is labelled
as ”completed”.

• (Attestation) Tracer: Another core component of CONNECT ’s TCB is the Tracer (Fig-
ure 2.2). The Tracer comprises two parts; the first operating in the untrusted/normal world,
inspecting safety-critical software components, while the other part runs in the trusted
world, where the Tracer’s secret key is stored. Regarding the part that is executed in the un-
trusted world, the Tracer is responsible for continuously fetching new traces by monitoring
processes and routines that are executed within the untrusted world of each container/de-
vice. Its primary scope is the collection of essential information for attestation methods
employed in CONNECT , for ensuring integrity. The tracer, in essence, is capturing hashes
of configuration properties from safety-critical untrusted processes and routines.

This monitoring in the untrusted world is not considered part of the TCB. Nevertheless,
there is a part of the Tracer’s execution that is executed in the trusted world, within the TCB.
This part entails the cryptographic-related operations, and more specifically: i) the decoding
of the raw security measurements, ii) the calculation of the real-time configuration hash and
iii) the generation of the digital signature over the configuration hash based on the secret
key. The collected traces are signed by the Tracer in the trusted world and are sent to the
Key Manager to perform the required operations.

CONNECT adopts and builds upon the classification, as defined by ETSI [24], to map the
extracted traces to specific assurance levels for the virtualised MEC-based infrastructure,
specifcally for the needs of the automotive sector. The ETSI-defined LoA uses numbering
from 0-5, to represent a scale of relative trust, where a greater number denotes a higher
level of trust. Based on this classification, the following scaling for CONNECT is defined:

– LoA 0: denoting the complete absence of any form of integrity verification.

– LoA 1: covering the local integrity verification (i.e., based on signatures) of the hard-
ware and virtualization platform’s (hypervisor) during boot and application loading. No

CONNECT D4.2 PU – Public Page 10

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Untrusted Tracer

Extract Raw
Traces

Trusted Tracer

Store Tracer's
Secret Key
Decode Raw
Traces
Sign Configuration
Digest

Key Manager

GRAMINE

Untrusted safety-critical
software

(1)

(2)

(3)

(4)

(5)

Figure 2.2: Attestation Tracer

proof of integrity is offered. Integrity status is derived from platform state after the end
of boot and application load processes.

– LoA 2: Adding to LoA 1 the remote attestation of the hardware and virtualization plat-
form integrity. Measurements of boot time and application load time are considered.

– LoA 3: Adding to LoA 2, LoA 3 includes the local verification of the Kubernetes or-
chestrator and API server, comprising the network plane, (i.e., based on signatures)
as they are loaded on startup.

– LoA 4: Adding to LoA 3 the remote attestation of Kubernetes orchestrator and API
server, comprising the network plane. Boot time measurements and application load
time measurements should be used.

– LoA 5: Adding to LoA 4 the remote verification of the Kubernetes orchestrator and
API server (comprising the network place) integrity state during run-time (i.e. post
load time).

It has to be noted here, that the Tracer comes with a pre-shared key pair that acts as a
Root-ID key of the Tracer. The public part of this Root-ID key is known by the Identity Au-
thentication Management (IAM) component. During the Secure Configuration of all Tracer-
enabled devices/components, the IAM sends the public key of the respective Tracer to the
Key Manager of each device/component. This process establishes a shared key bound to
the underlying hardware RoT, enhancing the security of communication and ensuring the
integrity of the Tracer’s attestation capabilities.

• Attestation Agent: It exposes the Trusted Execution Environment (TEE) Device Inter-
faces based on the TDISP protocol defined by the IETF standardization working group [25].
These interfaces are responsible for providing the run-time system measurements captur-
ing the current device’s configuration and operational state, as obtained from the Tracer,
following the Trusted Device Interface for Security Protocols ensuring the integrity of the
monitored traces even in the case of a compromised host. The Attestation Agent’s role in
providing authentic traces and ensuring the secure exchange of these measurements is
fundamental to the overall security and trustworthiness of the system. As in CONNECT
we are moving towards a zero-trust architecture, we want to minimise the trust assump-
tions to be made to the vehicle’s or MEC’s deployment environment for hosting CONNECT
TCB. This essentially pertains to the validation of processes that are executed in the host

CONNECT D4.2 PU – Public Page 11

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

which constitutes the “untrusted” world of the system’s operational environment. To this
end, we differentiate between two types of interfaces exposed by the Attestation Agent: the
Hardened-TDIs and Softened-TDIs. Hardened TDIs refer to the composition of interfaces
designed for enabling the secure interaction with CONNECT ’s TCB. Essentially, this is for
capturing the consumption of “TEE-assignable” resources meaning functionalities that have
the required trust/security capabilities to not be manipulated even by a compromised host.
These core functionalities relate to the key management (i.e., creation, storage and policy-
restricted usage of all application- and security/attestation-related keys) and the monitoring
of the integrity and authenticity of the Attestation Agent itself. On the other hand, Softened
TDIs are also TEE-I/O interfaces (instantiated in the “trusted” world of the system) but for
allowing the interaction with “Non-TEE-assignable” processes: These refer to processes
that are executed in the host that do not need to possess the required security/trust capa-
bilities offered directly by the TEE (so as to not impact their performance) but have a critical
role in the overall system function. Such processes can be related to events for triggering
operations including software upgrades, state migrations and/or continuous monitoring of
any changes in the trust level of the target system. These untrusted processes mediate the
communication of these events to the (trusted) AA for then securely executing the required
functionality. Due to their updateable nature, we don’t consider them as part of our Trusted
Computing Base, thus, it is desirable to employ attestation mechanisms for verifying their in-
tegrity as part of the overall Attestation Agent software stack; hence, the introduction of the
Verifiable Policy Enforcer (VPE) component (see later for detailed description). Designed
protection mechanisms are detailed in Section 5.4

• Verifiable Policy Enforcer (VPE): Acts as the entity responsible for validating the current
liveliness of the Key Restriction Policy Engine (KRPE) being enforced. Its primary function
is to prevent potential attackers from having multiple obsolete policies active. For instance,
if a past version of an application is associated with a specific policy with known vulnerabili-
ties, the VPE ensures that this policy is identified and characterised as obsolete, preventing
unauthorised or outdated policies from influencing the system’s security posture and allow-
ing an attacker to exploit them. Authorised by the Identity and Authentication Management
(IAM), the VPE monitors the correctness (i.e., integrity) of the software versions executed
by the Tracer and the Attestation Agent (i.e., parts of TCB) within the enclave, and if the
versions are successfully verified, then the VPE authorises the enforcement of a specific
key restriction usage policy. This verification process involves the use of a key obtained
(and sealed) from the IAM. If this key is correctly unwrapped and signed by the VPE, then
this signifies that the policies are satisfied. More details on the flow of this newly designed
protocol can be found in Section 5.4.2.2.

• Migration Service: This service offered by a component, instantiated as part of the TCB of
the device, supports the secure transfer of the state of an application, been launched at an
enclave, from a host A to a host B. The term hosts in this case refers to hardware-enabled
trusted environments. This process may be instantiated due to the alteration on the trust
level of a CCAM service or due to a specific event (i.e., task offloading).

A specific case of need for migration of a service/task includes the task offloading (i.e., due
to limited resources). In the task offloading case, a CCAM application or a CONNECT-
related task (i.e., the TAF) may need to be offloaded from the Vehicle to the MEC. The MEC
in this case is considered as a ”trusted worker”. More elaborated descriptions regarding the
secure offloading will be discussed in D5.3 [17].

CONNECT D4.2 PU – Public Page 12

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

2.2 CONNECT TEE Guard Extensions & Building Blocks

The TEE Guard Security Extensions (TEE-GSE) are comprised by a set of CONNECT system
components. These components play a crucial role in enabling a CCAM actor to provide run-
time evidence of operational characteristics (i.e., configuration, control flow execution, etc.) in a
verifiable manner, based on the use of advanced cryptographic primitives. In the initial deliverable
(D4.1 [10]), the focus was directed towards defining the TEE-GSE specifically for the vehicle
context. Nevertheless, it is crucial to emphasise that the trust assumptions in the vehicle setting
differ from those pertinent to the MEC infrastructure (i.e., MEC-produced Trust Opinion and MEC
Attestation Report).

Notably, while CONNECT relies on the use of standardised ETSI PKIs for safeguarding the iden-
tity of the vehicle, there are different privacy dimensions, one of which is the possibility of an
attacker to fingerprint the vehicle (i.e., by spoofing attestation evidence). CONNECT has de-
signed the cryptographic schemes to prevent such fingerprinting. These privacy requirements
are not necessarily mirrored in the MEC environment (i.e., depending on the MNO). Therefore,
the MEC-based TEE-GSE diverges from its counterpart in the vehicle context, as the harmoni-
sation of collected evidence is not a pre-requisite. In the vehicle architecture, this harmonisation
task is undertaken by the Trustworthiness Claims Handler (TCH) component, a role that is absent
in the MEC TEE-GSE . Therefore, in the subsequent paragraphs, the MEC-based TEE-GSE is
defined. Given the absence of the TCH role in the MEC, the responsibility for generating the
Verifiable Presentation (VP) shifts to the IAM.

The attestation evidence collected on the MEC side serves a dual purpose, being utilized by
both the standalone and federated TAF , instantiated within the MEC. These frameworks leverage
the attestation evidence as a trustworthiness source during the execution of MEC services. The
resulting Trust Opinion, reflecting the integrity status of the MEC infrastructure where specific
services are executed, is communicated back to the vehicles. This information is transmitted
through ETSI DENM messages, allowing the vehicles to consider the trust level associated with
the MEC that generated the data.

• IAM : The IAM component manages the V2X communication key, which consists of PKI-
issued pseudonym credentials following ETSI standards. This key is utilized for secure
communication with vehicles, the TAF , and the Mis-behaviour Detector (MBD) components.
Additionally, the IAM is tasked with creating the VP, from the received Verifiable Credential
(VC) from the MEC-based-TAF and -Attestation and Integrity Verification (AIV), which con-
tains information to be disseminated to the vehicles. This VP discloses attributes needed
to the vehicles per the service.

• AIV : The AIV manages the attestation process of all of the assets comprising a service
graph, either been instantiated on the MEC or the vehicle. As mentioned in Section 2.1, in
CONNECT we leverage the five LoA, as defined by ETSI. The process of evidence collec-
tion, which includes attestation evidence (i.e., traces) is instantiated either asynchronously
or upon request. Note that there are a number of possible mechanisms for the interac-
tion between the AIV and the TAF and these can be characterised as pull where the TAF
requests the attestation evidence that it needs, or push where the TAF receives initial at-
testation evidence and is then updated if this evidence changes. Hence the communication
can be both synchronous and asynchronous.

In the first case a vehicle may request to receives the MEC updates as it pertains to modifi-
cation on the trust level of a specific service. On the second case, upon request, and based

CONNECT D4.2 PU – Public Page 13

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

CLOUD BACKEND

MEC- A
Compute Node

Confidential Container

Confidential Container

En
v.

 M
od

el
 &

 T
ru

st
So

ur
ce

 E
vi

de
nc

e
Ex

tr
ac

tio
n

V2X-node
Trustworthiness List

V2X-node
Trustworthiness Map

Trust Assessment
Framework (TAF)

CONNECT TCB

Key
Management

System At
te

st
at

io
n

Ag
en

t

CONNECT TCB

Key
Management System At

te
st

at
io

n
Ag

en
t

SW Secure Element - Hypervisor

HW Secure Element

CONNECT DLT

 Master Compute
Node

Trust Policy Templates

T-CAMs/T-CPMs including also TCs + MD Report + Trust Opinions

In-Vehicle Manager ACompute Node

T-C
A

M
s/T-C

P
M

s including
also TC

s + M
D

 R
eport +

Trust O
pinions

In-Vehicle Manager BCompute Node

Confidential Container

Misbehavior Reporting
Service

Misbehavior Checks

CONNECT TCB

Key
Management

System At
te

st
at

io
n

Ag
en

t

Confidential Container

CONNECT TEE Guard Security Extensions

Task offloading /
 Migration Enclave

Attestation & Integrity
Verification

Confidential Container

V2X Communication
Interface

DENM Encoder

CONNECT TCB
Key

Management
System At

te
st

at
io

n
Ag

en
t

Network/Kube Proxy

Trust Opinion

Identity & Authentication
Management

MEC MD Report

Vehicle CAM/CPM
messages

Vehicle
TCs

T-C
A

M
s/T-C

P
M

s

Containerized
Services

Gramine TEE
Overlay

Registry

Kubernetes Key
Management

System

Enclave-cc

Digital TwinDigital TwinDigital TwinMEC
Containerized

CCAM Services

** including Traffic
Control Center, C-ACC

K
ub

er
ne

te
s

K
ey

 &
C

er
tif

ic
at

e
D

ep
lo

y
ce

rti
fie

d
ap

pl
ic

at
io

n
im

ag
es

CCAM information

Digital Twin

MEC TCs

Service
Manifest

Gramine
enabled
Manifest

Kubenertes Key

Enclave to enclave
Key (between different
graminised systems)

Task offloading /
 Migration Enclave

Attestation KeyTa
sk

 o
ffl

oa
di

ng

T-DENM

containerd

D
ep

lo
y

gr
am

in
is

ed
 im

ag
es

Operator

Kine API Server Kuber Proxy Flannel

Scheduler Control
Manager Kubelet

 Guard

MR Enclave
Measurement

Figure 2.3: MEC High-Level Architecture

on the time constraints, a new or an older attestation report may be leveraged. This evi-
dence is consumed both by the MEC-based TAF and the standalone TAF residing on the
vehicle(s), that leverages the attestation report to calculate the Actual Trust Level (ATL). It
should be clarified that the evidence leveraged at the MEC-based TAF and the standalone
TAF are different.

CONNECT D4.2 PU – Public Page 14

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

2.3 The CONNECT Trusted Execution Architecture

The overall Trusted Execution Architecture is depicted on Figure 2.3. At a high-level, the archi-
tecture is structured into four key levels: i) the vehicle, ii) the MEC, iii) the Cloud and iv) the DLT.
The fundamental idea revolves around the secure sharing of trustworthiness evidence, that can
be considered for assessing the trust level of any data or function during runtime. Based on this
secure exchange of evidence, the communicating parties can establish a trust relationship. The
TAF integrated into the MEC utilises these messages to create more accurate Trust Opinions,
leveraging an enriched set of data stemming from multiple vehicles. These Trust Opinions can
then be circulated to the vehicles, with the associated trustworthiness evidence on the integrity
of the MEC-enabled services.

The MEC is deployed by the Master Compute Node (i.e., Kubernetes) that resides in the cloud
side. The latter, has access to the Registry, containing images both for the CCAM services
and for the Gramine-enabled CONNECT services, as well as the Key Management System, en-
abling the deployment of the correct image. Note that even if CONNECT adopts the Kubernetes
orchestration technology for the purposes of the demonstration activities, as a framework it re-
mains agnostic to the actual technology used. Details on the Secure Deployment process are
described in Section 2.3.1. The verification takes place over the legacy infrastructure is deployed
by the Compute Node to the MEC site. The legacy infrastructure builds the Gramine-enabled im-
age and afterwards the Compute Node of the MEC site sends the MR Enclave Reference Value
Measurement to the Master Node of the cloud to perform the verification.

These containers incorporate the enclaves for all services, including the MBD, the TAF , the TEE-
GSE , the Digital Twin and the V2X communication interface. Lastly, the DLT is leveraged from
the MEC’s TAF to acquire the Trust Policy Templates (i.e., guidelines for the management of dy-
namic Trust Models). More information regarding the description and usage of the dynamic Trust
Models, acquired by the DLT are available on D3.1 [9] and D3.2 [15] The following paragraphs
will delve into detail regarding the exact operations performed by each layer.

2.3.1 Launching Securely Verifiable Confidential Containers

First and foremost in order for the CONNECT MEC-based framework to function properly, the
MEC containers should be securely launched (see Figure 2.4, which introduces a zoomed-in
illustration of the Kubernetes-based security architecture). To achieve this, CONNECT leverages
Kubernetes technology, specifically K3s. K3s is a fully conformant, production-ready Kubernetes
distribution tailored for operational efficiency in unattended, resource-constrained, and remote
environments. It ensures the reliable deployment and management of containers, supporting
the needs of production workloads. In the present deliverable, the Kine, the Supervisor and the
Tunnel Proxy are explained, that facilitate the launching of the MEC-based containers. More infor-
mation regarding the Kubernetes internal blocks and their functionalities are available in D5.2 [13].

The Kine database system stores cluster state data, Kubernetes resources, worker node sta-
tus, user roles, roles bindings, and container scheduling and orchestration information, enabling
Kubernetes components to perform their functions and storing Kubernetes secrets for authenti-
cation. The Tunnel Proxy in K3s ensures secure and efficient communication between control
and worker nodes, encrypting data transmission and protecting the cluster from external threats.
Lastly, the Supervisor in K3s enhances communication between worker nodes and the server’s
control plane functions by acting as an intermediary firewall. It establishes a web-socket con-

CONNECT D4.2 PU – Public Page 15

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

CLOUD BACKEND (Master Node)

Supervisor

Kine

API Server Kuber Proxy Flannel

Scheduler Control
Manager Kubelet

Registry

CONNECT images

MEC- A (Worker Node)

Kuber Proxy Flannel

Kubelet

containerd

Tunnel Proxy

Gramine Images

Enclave-cc

Gramine Base Image
CONNECT Image

Graminized Image

Graminized Services

containerdEnclave-cc

Graminized Image

Graminized Services

** including Traffic
Control Center, C-ACC

Digital TwinDigital TwinDigital TwinMEC
Containerized

CCAM Services

Confidential Containers
Digital TwinDigital TwinDigital TwinCloud

Containerized
CCAM Services

Confidential Containers

Gramine Base Image
CONNECT Image

Graminized Service

 Guard

 Guard

Kubernetes Key
Management

System

Figure 2.4: Kubernetes-based Container Architecture

nection for registration, connects to the supervisor and kube-apiserver via a load-balancer, and
ensures resilient connections during server outages. These components are crucial for launching
kubernetes containers.

As previously explained, CONNECT aims to follow the CoCo paradigm. Enclave-cc is leveraged
to launch confidential containers. More details on this are presented in Chapter 6. All containers,
including CCAM and CONNECT services, are initially deployed through a legacy container. The
security added by leveraging enclave-cc and CoCo depends on the trust requirements. These
trust requirements are dictated by the equilibrium between safety (i.e., which may be af-
fected by the overhead of such operations) and security; hence are dependant on the
offered service and its operational profile. Thus, not all containers conform to identical
principles. It should be mentioned that for the purposes of CONNECT demonstration activities,
Kubernetes and enclave-cc is leveraged to launch confidential containers.

Towards this direction, the Registry residing at the cloud-level comprises two types of docker-
based image files (i.e., including their Manifest files), that introduce the: i) the service manifest
files (i.e., CCAM service docker image) and ii) the Confidential Computing (CC)-enabled service
manifest files. The first type comprises the standardised docker image information used for the
deployment and orchestration of the service, specifying the size, bandwidth, network dependen-
cies of the container. The second type, the CC-enabled image defines the trusted files and what
runs isolated within the TEE. Note that for CONNECT the employed TEE is Gramine, which is
based on Intel SGX, hence, for the remainder of this document we will refer to the secure conver-
sion of a legacy container with the term “Gramine-enabled image”.

Both types of image files, may be deployed at the MEC side. The Gramine-enabled image is
built leveraging enclave-cc, which constructs the .sgx variant of the service manifest file includ-
ing information on the security requirements of specific files, processes, system calls, etc. of
the service and the level of isolation they need for their securte execution. In essence, the
enclave-cc builds an overlay of the Gramine-enabled image on top of a regular image file.
This Gramine-enabled image leverages the Intel SGX hardware in order to launch confidential
containers, hence the manifest includes relevant information for the deployment over this trusted

CONNECT D4.2 PU – Public Page 16

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

hardware.

The Gramine-based Manifest file further includes the MR Enclave Reference Value Measure-
ment, that is essence, a reference value, based on the bootup measurement of the enclave.
Furthermore, in addition to the Gramine-based Manifest file, enclave-cc supplies the digest of
the application intended for deployment within the container, referred to as the MR Enclave. This
digest is signed to generate the .sig file, allowing anyone to verify its authenticity. Kubernetes
acts the underlying technology that enables the deployment and orchestration of these manifests
at the MEC side.

To ensure that the correct application is being launched, verification through recalculation of
the MR Enclave Reference Value Measurement also takes place. This verification is performed
by the Kubernetes Key Management System, residing at the cloud, which accesses the available
information within the Registry. To perform this task, the Kubernetes Key Management System
recreates the Manifest file for a given Gramine-based docker image, based on the MR Enclave
measurement, and compares the two values; the one that it calculated with the one received by
the registry. After the successful verification, the Kubernetes Key Management Service releases
the Kubernetes secret key (i.e., used for the secure communication with other containers or with
the Master Compute Node) and the certificate. This certificate includes the public part of the
Kubernetes public key, to enable the authentication of the container’s workload. Whenever a con-
fidential container is launched, the Kubernetes secret key and the certificate need to be retrieved
as they dictate the expected state of the container, which is needed for its verification.

2.3.2 Verification of CoCo Workload & Container Binding

Up until now, the secure deployment/launching of a container has been covered. When lever-
aging the term secure deployment, we also capture the final operation of the integrity check of
the launched (confidential) container. This is done by extracting and sharing the MR Enclave
Reference Value Measurement that holds the hash of the whitelist of binaries been instantiated
as part of the Gramine-enabled container. The verification is performed by the Kubernetes Key
Management Service as part of verifying the correctness of the container prior to releasing the
kubernetes encryption key further enabling the Establishment of secure and authentication chan-
nels with other containerized services and/or the Master Compute Node.

However, while this operation ensures the integrity of the launched containerised service, it does
not provide any evidence on the provenance of the container itself. This is required in complex
and multi-tenant environments where multiple instances of the same application and/or secu-
rity services might be instantiated and, thus, enhanced authentication capabilities are required
for guaranteeing the communication with the intended service. For instance, consider the case
where in a MEC deployment environment, operated by multiple MNOs, there are two Attestation
& Integrity Verification (AIV) components instantiated in different containers - each for managing
the construction of verifiable attestation attributes on the part of the MEC infrastructure managed
by each MNO. When these trustworthiness/security claims are communicated to the vehicle to-
wards assessing the trust level of the MEC itself, the vehicle needs to make sure that it receive
claims - in a verifiable manner - from the appropriate AIV.

To achieve this, in CONNECT we proceed with binding the public part of the container’s
Kubernetes (identity) key, as part of its certificate issued by the Kubernetes Key Manage-
ment Service, with the attestation secret/key based on which an attestation attribute is
monitored and signed. This allows any external verifier (e.g., vehicle) to not only attest to the

CONNECT D4.2 PU – Public Page 17

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

correct state of the container (based on the attestation signature received) but also have the
necessary guarantees of the authenticity of the container: The presented certificate is bound to
the container’s unique Kubernetes key, thus, no one else is able to use it or shoe this certificate
without proof of possession of this unique identifier.

More specifically, CONNECT suggests associating the attestation key, utilised by the AIV for sign-
ing evidence, with the certificate. This association signifies that the AIV can construct the Trust-
worthiness Claims (TCs) only when such a certificate is present, facilitating verification through a
key restriction usage policy. This, in turn, ensures that the enclave has been launched correctly.
This certificate is also part of the VC to be constructed by the AIV further including the Level
of Assurance (LoA), based on the attestation evidence being monitored. Consequently, both
the certificate and the attestation key act as evidence that the confidential container has been
launched correctly (i.e., boot-up integrity); hence, the application running in the enclave is the
correct one. More details on this are described in Story-XXX. Please note that the cryptographic
schemes being described in Chapter 5 achieve a LoA 2. In the second version of the CONNECT
framework the plan is to reach a LoA 4.

2.3.3 Secure Migration and Task Offloading

In addition to the deployment of containerised services, CONNECT further considers the migra-
tion of an enclave and task offloading of a certain process from the vehicle computer to the MEC.
Both procedures takes place based on the Trust Policies. An illustration of a policy that might
prompt task migration is delayed response time. The offloading may include any application or
even the TAF . In the latter case, the entire trust calculation may be offloaded to the Digital Twin
TAF (DT-TAF) which resides at the MEC. Nevertheless for these calculations to be performed the
vehicle should share its Trust Model along with the Trust Sources as extracted by its Trust Source
Manager (i.e., TAF and MBD). Hence, the MEC acts as a trusted worker to facilitate the vision of
both a Federated TAF and a DT-TAF (more information on this is available in D3.2 [15]).

Furthermore, CONNECT supports the secure migration of an entire enclave from a host A to a
host B. To achieve integrity of the migratable state CONNECT leverages the MR Signer key. This
key is a symmetric key, strictly bound to the enclave’s underlying trusted hardware (i.e., Intel SGX
for the CONNECT demonstration), which means that it can be generated strictly on the device
that the enclave is running. The MR Signer key derives from the hash of the enclave public key.
In parallel, for confidentiality the migration state components being instantiated into two devices
interact to establish their own communication key. More information on the details of this scheme
can be found in Chapter 6, while th respective user story is presented in Story-XXIX.

2.4 CONNECT MEC Information Flows

In the scenario of Intersection Moving Assistance (IMA) with a single vehicle, the vehicle actively
gathers kinematic data from neighbouring vehicles and generates additional data through its own
sensors. Utilising this data, the vehicle conducts a trust assessment and formulates its own trust
opinions. At a specific moment, when the vehicle encounters another vehicle, it requests the trust
level of the observed vehicle from the Multi-Access Edge Computing (MEC) infrastructure.

The CONNECT information flows, as it pertains to the MEC side, are depicted on Figure 2.5.
The process is intiated by the MEC receiving a T-CAM/T-CPM message from the vehicle(s). Two

CONNECT D4.2 PU – Public Page 18

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Ex
tr

ac
t T

ru
st

 M
od

el
s

fo
r

Fe
de

ra
te

d
Tr

us
t A

ss
es

sm
en

t

4

MEC

Facility
Layer

DENM
Encoder

Attestation
Integrity

Verification

Legend

Trust-
DENM

message

Identity
Authentication
Management

Misbehavior
Detection

1

Trust
Assessment
Framework

3

CONNECT Data Flows

Application-related sw
components
CONNECT-related sw
components running in
seure containers

Root of Trust

CONNECT-related flow
Application-related flow

Components of the
CONNECT TEE Guard
Security Extensions

1
T-CAMs/T-CPMs including the TCs (i.e., the
harmonised MD Reports + Trust Opinions +
Attestation Reports in the form of a VP from
the vehicle)

2 Verification of PKI pseudonym & VPs (i.e.,
DAA threshold signature)

1

2

3b T-CAMs/T-CPM

3a

3b

5 Verification of TC (MD report & TAF report +
+ attestation report)

6 MEC-MD report

5

4

4
Verify IAM Verification Report & Perform
misbehavior checks based on CAM/CPM
messages

Compute Node

2

8

Application Data Flow

Application
Layer 3a TAF Report and IAM's Verification Report

(i.e., in the form of VP)

7

6

7 Perform Trust Assessment for CCAM service
(i.e., CAM/CPM message)

9 MEC Infra Attestation Report

8 Collect & verify attestation evidence for the
MEC infra

11

9

10

11 TAF Report on CCAM service (i.e., CAM/CPM
message) + TAF Report on MEC

10 Perform Trust Assessment for MEC

12

12 TAF Report on MEC

13 Signed TAF Report (i.e., Trust Opinion) on
MEC with PKI pseudonym

13

1 CAM/CPM message

2 CCAM application decision

3
DENM message including CCAM application
decision + TO on MEC signed with PKI
pseudonym

Figure 2.5: MEC Information Flows

separate flows are illustrated in the figure: the red flows depict the activities performed to support
and provide (kinematic) data for the applications (i.e., the CCAM services), while those in green
colour capture the interactions that take place between all CONNECT -related components for
enabling both data- and node-centric trust assessments.

The flow begins when the MEC receives new T-CAM and T-CPM messages from the vehicle(s),
including the Trustworthiness Claims (TCs) which encompass the Trust Opinion (TO) as calcu-
lated by the vehicle’s TAF , the MD Report and the harmonised Attestation Reports, in the form
of VP. This message is received by the Facility layer which forwards the T-CAM and T-CPM mes-
sages to the IAM (step 1). Note that the T-CAM and T-CPM messages are also sent to the
Application layer, where the CCAM service is executed (i.e., red flow step 1).

The IAM verifies the PKI pseudonym included in the VP as well as the aggregated threshold
signature that is outputted by the vehicle’s TCH, used to sign the Trustworthiness Claims (TCs),
comprising Trust Opinions, Misbehaviour Reports, harmonised attestation assertions, following
the scheme described in Chapter 5 (step 2).

After the successful verification, the IAM sends the TAF Report (included in the VP) along with
the IAM verification report to the MEC-based TAF , (step 3a) and the CAM/CPM message(s) to
the MEC-based MBD (step 3b). The latter, verifies the IAM report and performs its own misbe-

CONNECT D4.2 PU – Public Page 19

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

haviour checks on the received CAM/CPM messages (step 4). The MEC-based TAF verifies the
TCs (including the vehicle’s MD, TAF and attestation reports) (step 5) and after the successful
verification of the TC, it may continue with its own assessments.

Note that the TAF’s scope in the MEC is dual, hence two assessments take place: i) a trust
assessment for the CCAM service being executed at the vehicle, responsible for the collection and
sharing of kinematic data and ii) a trust assessment for the MEC Infrastructure, where the cloud
equivalent of the service is instantiated (i.e., traffic control). For the first, the TAF requires from
the MD to send the MEC-based MD report, which is produced based on a variety of CAM/CPM
messages derived from multiple vehicles (step 6). The TAF combines this information along with
its own Trust Model in order to produce a report for the CCAM service (step 7). For the second
type of assessment, the TAF requires the AIV report. As performed at the vehicle side, the AIV
containerised service running on the MEC collects; thus verifies the attestation evidence about
the target container, executing the CCAM service (step 8) and produces an attestation report,
based on which a Trustworthiness Claim (TC) is created. This TC is sent to the TAF (step 9),
while it is circulated to the vehicle enabling to assess the MEC’s level of trust when producing
its own trust decision. As mentioned in the previous section, in order for the vehicle to be able
to authenticate the correct reception of the evidence from a valid and authentic containerised
service, it needs to be able to verify the identity of the workload. This is performed through the
use of the certificate, bound to the attestation key, used by the AIV to sign the evidence, hence
the evidence can be trusted by the vehicle.

Afterwards, the TAF verifies the attestation report and commences the trust assessment process
for the MEC Infrastructure, producing a TAF Report (step 10). The two TAF Reports (i.e., one
for the CCAM service and the other one for the MEC Infrastructure) are sent to the Application
Layer (step 11). The Application Layer leverages this information to get the CCAM application
decision (i.e., slow down the vehilce). Additionally, the TAF Report for the MEC Infrastructure is
sent from the AIV to the IAM (step 12). The latter signs the TAF Report on the MEC leveraging
the PKI Pseudonym, and sends this information to the DENM Encoder, to be disseminated with
the vehicles in the vicinity (step 13).

CONNECT D4.2 PU – Public Page 20

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 3

Secure Container Lifecycle Management
on Cloud/Edge/Vehicle Continuum

3.1 Container Management in CONNECT Far-Edge & MEC

Chapter 2 has introduced the MEC-based CONNECT architecture, which incorporates both reg-
ular (i.e., legacy) containers, as well as confidential containers, that can be used to provide an
enhanced environment, in terms of security, for the deployment and execution of MEC-based
CCAM services. CCAM applications can be supported either through legacy or confiden-
tial containers. The decision depends on the acceptable level of overhead in such safety-
critical systems. Original Equipment manufacturer (OEM)s or Infrastructure Administrators may
opt for legacy containers when enhanced security is not critical, while confidential containers are
chosen when advanced protection is paramount. Note that: (i) the CONNECT components
that comprise the TCB are executed within confidential containers; while (ii) to deploy a
confidential containers the platform must provide a Trusted Execution Environment (TEE)
equipped with a Root of Trust (RoT). Any infrastructure launching a confidential container
needs a RoT to provide the necessary guarantees for the configurational and behavioural in-
tegrity of containerised services. This security measure aligns with CONNECT ś vision to provide
advanced protection accompanied with verifiable evidence on the trust state of (HW and SW)
elements across the entire CCAM continuum.

This container-based architecture mirrors, to some extent, the vehicle-based services described
in Deliverable D4.1 [10]. Similar to the vehicle, components on the MEC are executed within
containers deployed using a Kubernetes compute node. In the vehicle this node is running
within the In-Vehicle computer. Managing containers is crucial for the CONNECT project to
ensure smooth deployment and operation of containers across the Cloud/Edge/Vehicle contin-
uum. This involves coordinating different signals to manage container lifecycle operations, such
as deployment, startup, pausing, migration, and stopping. This uniform interface facilitates the
management of containers, across the different layers of CONNECT (i.e., Cloud, Edge, and Ve-
hicle). The consistency in infrastructure throughout different layers simplifies the system
architecture and guarantees uniformity in deploying and managing containers.

As previously described, confidential containers are legacy containers that are enhanced with
the necessary features to operate in a Trusted Execution Environment (i.e., Gramine-enabled
containers in CONNECT). The detailed methods for accomplishing this goal are explained in the
following sections, with the objective of achieving simplicity and scalability.

CONNECT D4.2 PU – Public Page 21

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

3.2 Docker-Style Container Management for TEE-protected
Workloads

We now outline the interplay between a Docker-style container management infrastructure and
TEEs. In Section 3.2.1 we outline how Container Management works for legacy services, without
security. In Section 3.2.1.1 we then document the security objectives that we plan to achieve. In
Section 3.2.2 we then document how a legacy container (without TEE-enablement) can be con-
verted into a ”Graminized” container that includes the Gramine LibraryOS and TEE-based hard-
ware protection. One tool for seamless migration is called enclave-cc. We outline the enclave-cc
architecture in Section 3.2.3. We conclude the chapter in Section 3.2.4 by describing how the
required state transition work once the container is TEE-enabled.

3.2.1 Legacy Containerized Service Instantiation

The process of instantiating containers in K3s involves multiple components interacting with each
other, for the deployment of the service workloads at particular node(s) within the cluster, e.g.,
to the CONNECT MEC nodes. In what follows, the analysis focuses on the default process em-
ployed for the instantiation of containerised services either on the MEC or the Vehicle Computer.
For instance, consider the envisioned use case of Collaborative Cruise Control where a CCAM
service/application provider aims to deploy this service along its functions within a vehicle. In this
scenario, the service will be instantiated in both spectrums of the continuum so as to also allow for
the possible migration/offloading of specific functions to the MEC - either in the case of a possible
compromise (change in the trust level of an ECU) or due to lack of resources of the execution of
specific operations. The objective of this chapter is to detail the entire lifecycle management of a
continerized service and highlight the core innovations brought by CONNECTas it pertains to the
coupling of the two adopted technologies: these of trusted and confidential computing. As will
become evident, CONNECT is the first of its kind to integrate the use of enclave-CC technology
over the Gramine SGX-based TEE as the underlying Root-of-Trust. However, a more focused
description of the employed Kubernetes orchestration technology can be found in D5.2 [13].

The process begins with a user/administrator (or an automated system) creating a deployment
through the K3s API server (see Figure 2.4). This is typically done using kubectl, the Kubernetes
command-line tool, to submit a YAML file (or a set of manifest files) that describes the desired
state of container services, or via a Kubernetes package manager such as helm3, that helps
streamline the deployment and management of Kubernetes applications.

The API Server submits the new deployment to Kine (i.e., the translation layer between Kuber-
netes and the underlying database, as described in Section 2.3.1 and D5.2 [13]), along with its
status (i.e., new assignment, pending for deployment). The scheduler constantly watches the
API Server for new work items (Pods that need to be assigned to a cluster node). Once a new
assignment is found, the Scheduler queries the API Server to gather current data about the state
of the cluster. This includes information about the resources available on each node, such as
CPU, memory and storage, affinities, anti-affinities, taints, tolerations and other scheduling con-
straints that are defined in the Pod’s specification or the cluster’s policies. The Scheduler uses
this information to evaluate which nodes have sufficient resources to run the pod. Once a node
is selected, the Scheduler communicates back to the API Server to bind the pod to the chosen
node, and API Server updates the pod’s information in Kine to reflect this binding.

Through the Tunnel Proxy, the Kubelet agents at each worker node are continuously watching the

CONNECT D4.2 PU – Public Page 22

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

API Server for pod bindings. Once a kubelet detects that a new pod assignment is destined for its
node, it interacts with the container runtime engine (e.g., docker, containerd, cri-o) to prepare for
container deployment. Particularly, Kubelet passes the container image, environment variables,
volumes, and other necessary information (based on the k3s service manifest) to the container
runtime, e.g., containerd. Subsequently, containerd pulls the container image from the image
registry (or uses a local copy if available/instructed). After the image is pulled, containerd creates
the container based on the specifications provided by the service manifest files.

Additionally, the kube-proxy and the network plugin (e.g., flannel) create the necessary virtual
networks to establish communication between different Pods (potentially across hosts) or for Pod
communication with services outside the cluster. Once the container is running, containerd con-
tinues to manage its lifecycle and reports the status back to the Kubelet. The Kubelet updates
the status of the Pod in the API Server, which in turn updates the overall deployment status in
Kine. This status information is also constantly monitored by the controller manager which per-
forms automated health checks and adjustments when needed, to ensure that the desired state
declared by the user in the deployment phase, is achieved and maintained.

Up till now, we have elaborated upon the launching of a docker legacy container. Nevertheless, as
described in Section 2.3.1, the process adopted by CONNECT further includes the verification of
the container, through the recalculation of the MR Enclave Reference Value Measurement. This
step is introduced by CONNECT to include a short of verification regardless of the container type
(i.e., legacy or confidential container).

3.2.1.1 Problem Statement: TEE-Enablement of Docker Containers

The goal of our research and development within the CONNECT project is to allow for seamless
integration of confidential containers into a security-enhanced container management framework.
Today, an application that was SGX-enabled by its developer is also capable of running within a
container. Since the security guarantees of Intel SGX are self-contained, this approach will not
affect the security (i.e., in terms of confidentiality/integrity) of the contained secure enclave. We
structure our approach into two phases of the life-cycle of a container:

On-boarding During the first phase, the container and its included applications need to be
security-enabled by its designer. Our goal is to automatically on-board most containers
without the need of developer intervention.

Management While Intel SGX ensures security, the container-style management (starting, stop-
ping, migrating) may render the state of the enclave inconsistent, which may reduce its
availability. For instance, if an enclave is terminated at an inopportune moment, without
having stored its state, cryptographic and other security protocols may encounter issues
during the enclave’s subsequent restart. To allow container-style state management, we
will explain how a TEE can securely safe and restore its state in line with the desired life-
cycle of the container.

The container management extension, Enclave-CC, aims to automatically convert any container
image into a Gramine-enhanced container that is suitable for execution in an Intel SGX TEE. As
aforementioned, one of the core innovations of CONNECT is improving the integration of
Gramine and enclave-CC technologies. To achieve this integration, we plan to augment the
existing Gramine baseline TEE image with improved integration hooks and test it against sample

CONNECT D4.2 PU – Public Page 23

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure 3.1: Integration points of Enclave-CC with Gramine.

Enclave-CC application images and flows. We have already enabled remote attestation flows
based on the integrity checks (of the correct conversion of a legacy container to a Gramine-
enabled container) performed by the Key Broker Service (KBS) as described in Sections 2.3.1
and!2.3.2 and depicted in Figure 3.1.

The initial integration point (that has been completed) revolves around image management (Step
1). Specifically, when an Agent enclave (operating with Gramine) initiates the deployment of the
application, Gramine must permit the Agent program to establish a secure SSL/TLS connection
to the Image registry. This connection is leveraged to download the encrypted application image,
decrypt it using the image encryption key, and subsequently re-encrypt it using an SGX-platform-
specific sealing key. Gramine has all the required features to implement this integration point:
Gramine supports SSL/TLS sessions over TCP/IP and has the ability to download files using
“recv()” system calls. Gramine also provides utilities to decrypt and encrypt data using different
keys; these utilities are based on mbedTLS library’s functionality. Finally, Gramine exposes SGX-
platform-specific sealing keys, so that the Agent program can use them for re-encryption.

In continuation of this process, the second step in Figure 3.1, accounts for the acceptance of
the encrypted file system of the application image (Step 2). In particular, when an Application
enclave (that also runs with Gramine) is triggered by the Agent Enclave to start the application,
Gramine must detect the encrypted file system of the application image on the host disk, copy
it inside the SGX enclave, decrypt it using the SGX-platform-specific sealing key, reconstruct
the file system hierarchy from this decrypted image and present it to the application (so that the
application can see the files and operate on them). This second integration point may require
new functionality in Gramine, because image file systems typically have properties which are
not currently implemented: i) application image may have symbolic and hard links, ii) application
image may specify file creation, access and modification times, iii) application image may have
non-regular files such as named UNIX domain sockets. Therefore, this second integration point
may require implementing some or all of the aforementioned functionalities in Gramine.

The final integration points concern the introduction of the enhanced attestation flows, mentioned
in Chapter 2, for allowing both the integrity check and credential binding of a confidential
container but also the Enhanced Configuration Integrity Verification (CIV) based on the newly
designed protocol described in Section 5.4 (Steps 3 and 4). For the former, an Agent enclave
must connect to the KBS to obtain the image encryption key. The Agent must verify the trust-
worthiness of KBS, to gain trust in the key that it receives. Similarly, the KBS must verify the

CONNECT D4.2 PU – Public Page 24

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

trustworthiness of the Agent enclave, to gain trust in this Agent and to release the secret key to
it. In other words, Gramine will be acting as the mediator for exposing the necessary interfaces
to allow the integrity verification of the Application enclave.

For the latter (Step 4), the two enclaves must verify each other’s trustworthiness, to establish a
shared SGX-platform-specific sealing key that encrypts the image’s file system. In particular, the
Application enclave must request this key (more specifically, the parameters to derive this key)
from the Agent enclave; to this end the Application enclave must be sure that it communicates
with the genuine Agent enclave that provides the correct encryption key. On the other hand,
the Agent enclave must release this key only if it verifies that the Application enclave is genuine
and is expecting the correct application image. Gramine has low-level attestation primitives for
SGX local attestation, but unfortunately, it currently lacks a higher-level library to simplify the
coding of “SGX local attestation over TLS“ flows (this could be called LA-TLS). Therefore, the
last integration point may require adding new functionality to Gramine – the LA-TLS library to
establish TLS connections coupled with SGX local attestation.

3.2.2 On-boarding Containers while Enabling TEE-based Execution

The first challenge to address is on-boarding a workload to create a docker image that is exe-
cuted within an Intel SGX Trusted Execution environment (see Story-XXV). We will outline two
alternatives: The first alternative will “graminize” an image at design-time to create a container
image that contains an application as well as Gramine. This image can then be stored in the
image repository and instantiated like any other container. However, this approach has two lim-
itations: (a) The designer needs to be aware that the container will be executed in a TEE and
is required to prepare for it and (b) Each and every TEE-enabled image contains a copy of the
Gramine operating system.

To overcome these limitations, the second approach adds Gramine at run-time. The core ideas is
that the workload-image and the Gramine-image are kept separately. When a secure container
is requested, both images are combined at run-time and then started within the TEE.

3.2.2.1 Background: Creating Images for Secure Containers at Design-Time (CASE A)

This approach requires a standard Docker image. By using a specific tool called GSC, this image
can then be converted. To do so, the runs it through the GSC tool to obtain a “graminized” image.
Let us consider a specific example: assuming that the original Docker container image has a
name “helloworld”:

$ gsc b u i l d he l l owo r l d he l l owo r l d . mani fes t
$ gsc sign −image he l l owo r l d p r i va te −key .pem

The resulting “graminized” Docker container image has the name “gsc-helloworld”. This image
can now be encrypted with a user-private key and uploaded to the Enclave-CC image registry.
A corresponding encryption key should be securely uploaded to the Key Broker Service’s Key
Manager database. The important enclave measurements of the resulting image must also be
submitted to the Key Broker Service, so that it will be able to verify the authenticity of the appli-
cation image pulled by the Agent enclave. The Key Broker Service also needs a configuration to
know how exactly to run this container image; the configuration is a JSON file that may look like
this:

CONNECT D4.2 PU – Public Page 25

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

{
” metadata ” : {

”name ” : ” he l lowor ld −encrypted −con ta ine r ”
} ,
” image ” : {

” image ” : ” ghcr . i o / c o n f i d e n t i a l −con ta ine rs / he l lowor ld −conta iner −enclave −cc ”
} ,
”command ” : [

” / usr / b in / gramine−sgx ” ,
” / usr / b in / h e l l o w o r l d ”

] ,
” l og pa th ” : ” he l l owo r l d . log ” ,
” devices ” : [
{ ” con ta ine r pa th ” : ” / dev / sgx enclave ” , ” hos t pa th ” : ” / dev / sgx enclave ”}

]
}

Finally, the user must create a Pod definition to use this confidential container image in a Kuber-
netes deployment. The Pod definition would have the following configuration:

apiVers ion : c o n f i d e n t i a l c o n t a i n e r s . org / v1
k ind : CcRuntime
metadata :

name : ccrunt ime −enclave −cc
namespace : c o n f i d e n t i a l −conta iners −system

spec :
runtimeName : enclave −cc
con f i g :

i n s t a l l T y p e : bundle
payloadImage : ghcr . i o / c o n f i d e n t i a l −con ta ine rs / he l lowor ld −conta iner −enclave −cc
insta l le rVolumeMounts :

− mountPath : / e tc / con ta inerd /
name : conta inerd −conf

− mountPath : / e tc / enclave −cc /
name : enclave −cc−conf

i ns ta l l e rVo lumes :
ins ta l lCmd : [” / opt / enclave −cc− a r t i f a c t s / enclave −cc−deploy . sh ” , ” i n s t a l l ”]

. . .

After these preparation steps, this Pod definition can be fed to the Kubernetes cluster, which will
allocate a Kubernetes SGX node to run the Agent enclave container and the Application enclave
container, and the user workload will start running inside the Application enclave.

3.2.2.2 Enclave-CC Goal: Run-time Conversion of a Container (CASE B)

Up until now, we have discussed the deployment of TEEs like Gramine-SGX on bare metal sys-
tems, in a manual fashion. In reality, most production environments use automated deployment
tools, coupled with virtualisation and transparent scheduling and scaling of available machines.
This is typically achieved by wrapping user workloads in containers such as Docker containers,
and managing these containers via an orchestration system like Kubernetes [3].

To reap the benefits of trusted execution, the traditional containers and their orchestration model
must be enlightened to work with TEEs, providing confidentiality of user workloads in the cluster
of nodes. Such enlightened containers are called confidential containers (CoCos).

CONNECT D4.2 PU – Public Page 26

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure 3.2: Enclave-CC architecture and flows.

Confidential Containers use hardware-based TEEs for resource isolation, data protection, and
remote attestation [7]. They can protect sensitive data in use from privileged third parties. Confi-
dential containers have the following characteristics:

• Provide confidentiality and integrity for data, especially for run-time data.

• Facilitate end-to-end security for the deployment and operation of sensitive workloads.

• Provide a way to prove that the environment in which confidential workloads are launched
is authentic and trustworthy.

• Tenants maintain almost the same experience as using ordinary containers, but can deploy
sensitive applications with greater confidence in their security.

Confidential container isolation can take two forms: i) process-based and ii) virtual machine (VM)
based isolation. The Enclave-CC project provides a process-based confidential container solu-
tion, leveraging Intel SGX [5]. Enclave-CC does not measure and attest to the workload (user
application); instead it uses a generic SGX enclave to isolate user’s application from the rest of
the system. Measurement and attestation of this empty generic enclave are used in building trust
to run the application securely.

Enclave-CC provides all the elements for a complete container deployment flow, from creating
a user container image with encryption/signature to uploading it to an image registry, to pulling
the image, verifying its signature and decrypting it, unpacking it into the file system inside the
SGX enclave, and finally starting the user application inside the confidential container. With this
approach, all container processes are isolated using Intel SGX enclaves.

3.2.3 The Architecture of Enclave-CC

Figure 3.2 depicts the architecture and the general flows of Enclave-CC coupled with Gramine
and Intel SGX. In the figure, the blue-painted boxes are the components that are developed in the

CONNECT D4.2 PU – Public Page 27

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

scope of the Enclave-CC project. Note that integration of Enclave-CC and Gramine is depicted in
the figure, but it is currently an ongoing effort.

The main components in the Enclave-CC architecture are:

• Agent enclave – an Enclave-CC process that runs inside Gramine-SGX. It accepts re-
quests from shim-runc and handles image management, SGX local and remote attesta-
tion, and encrypted file system management.

• App enclave – a user-application process that runs inside Gramine-SGX. It starts as a
generic empty enclave and waits for instructions from the Agent enclave. When the Agent
enclave has prepared all app-enclave data, the App enclave obtains the encrypted file sys-
tem blob, decrypts it, and starts the execution of the client application.

• shim-runc – a standard shim component that sits between containerd and runc. It
accepts requests from containerd, starts and pauses the Agent enclave container and
asks the Agent enclave to perform image management actions. All containers started by
shim-runc are instantiated by the traditional runc tool.

• Image registry – The Agent enclave container image and the encrypted App enclave con-
tainer images are put in the image registry. Upon request from the Agent enclave container,
the image registry releases the encrypted App enclave container image.

• Key Broker Service (KBS) – a service that verifies the trustworthiness of the Agent en-
clave, by performing SGX remote attestation with it and consulting the Intel PCS service
to make sure the Agent enclave is a genuine SGX enclave executing the expected code.
Key Broker Service also serves as a front-end to the Key Manager database that holds the
encryption keys for encrypted application images.

The typical flow depicted in Figure 3.2 proceeds as follows. (step 0) The operator of the cluster in-
stalls the Enclave-CC run-time in the cluster. In particular, this installation copies shim-runc and
containerd binaries into Kubernetes master nodes, adds image bundles of the Agent enclave
container and the Boot (empty generic) enclave container to the image registry, and re-configures
containerd to enable Enclave-CC run-time. After the Enclave-CC run-time is successfully in-
stalled by the operator, the application workloads can be deployed.

To deploy an application in the Kubernetes cluster, the remote user defines a Pod configuration to
describe the workload and run-time requirements (step 1). The user deploys this Pod definition
into Kubernetes and the request is propagated to containerd. The shim-runc tool receives the
container creation request from containerd and creates the Agent enclave container using runc

(step 2). Next the shim-runc tool requests the Agent enclave to pull an encrypted application
container image (step 3). The Agent enclave receives this image pull request and downloads the
encrypted application image from the image registry (step 4).

Then the Agent enclave must make sure that the encrypted image is known to the system; to
this end the Agent enclave performs an SGX remote attestation with the trusted Key Broker
Service, which verifies the identity and trustworthiness of the Agent enclave and confirms the
correctness of the downloaded image, as well as sends the encryption key for this image (step
5). After remote attestation, the Agent enclave decrypts the downloaded application image, re-
encrypts the application image with a randomly-generated ephemeral key and constructs a new
encrypted file system out of this image (step 6). In parallel to this process, shim-runc creates

CONNECT D4.2 PU – Public Page 28

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

the Application enclave container and starts the Gramine instance, which performs the “empty
generic enclave” boot-up (step 7).

After the Application enclave is fully booted and initialised, it waits for the SGX local attestation
request from the Agent enclave. During local attestation, the Agent enclave sends the application
workload configuration, the path to the encrypted file system blob and the encryption key for this
file system (step 8). The Application enclave locates the encrypted file system, moves it inside
the SGX enclave, decrypts it and installs it as the Gramine file system (step 9). After this flow
completes, the application can finally be run inside Gramine.

3.2.4 Life-Cycle Management of TEE-Enhanced Containers

In Section 3.2.2, we outlined how to create a TEE-enhanced container that is ready for deploy-
ment in a Kubernetes cloud infrastructure. We now describe considerations for the life-cycle
management of a TEE-enhanced container (see Story-XXVII). The core requirement is that the
container implements features to support the lifecycle of a Kubernetes Pod [39]. If we assume
that the original container (without TEE-enhancements) implemented these requirements, then
our goal is that the recently added TEE does not break this implementation. In general, the
container life-cycle is structured into these phases (quoted from [39]):

Pending: The Pod has been accepted by the Kubernetes cluster, but one or more of the contain-
ers has not been set up and made ready to run. This includes time a Pod spends waiting
to be scheduled as well as the time spent downloading container images over the network.

Running: The Pod has been bound to a node, and all of the containers have been created. At
least one container is still running, or is in the process of starting or restarting.

Succeeded: All containers in the Pod have terminated in success, and will not be restarted.

Failed: All containers in the Pod have terminated, and at least one container has terminated in
failure. That is, the container either exited with non-zero status or was terminated by the
system.

Unknown: For some reason the state of the Pod could not be obtained. This phase typically
occurs due to an error in communicating with the node where the Pod should be running.”

By default, most containers are stateless while state is kept either outside the system (on a
database server) or in a few well-defined containers that are part of a StateFulSet. The goal
of this approach is that it supports scaling (any number of containers can be started for a given
container image to scale the workload. Similarly, without state, a failed container can be de-
stroyed and restarted to try to recover the workload. Since a TEE only adds protection (and not
state), the same holds for TEE-enhanced containers. They can be killed and restarted and -
whatever signals the container received - they will automatically also affect the TEE that is part of
this application.

The challenging part is the life-cycle management of TEE-enhanced containers where the TEE
contains state that must be preserved (see Story-XXVII). To address this need, the main require-
ment is that the TEE can save its state when receiving a SIGINT signal and recover its state
when being restarted (see Story-XXIV). This is implemented in two phases. Depending on the
programming language, this may require explicit support by the developer to preserve a consis-
tent state.

CONNECT D4.2 PU – Public Page 29

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

3.2.4.1 Can Application State be Saved Automatically?

Our initial goal was to automatically snapshot and dump the state of a complete application.
Based on our research [29] we concluded that agnostic snapshotting of any application may be
possible in some simple cases (e.g. some single-threaded application written in C) but will not
work in general. Example challenges we identified are:

• How to reconstruct the opened file metadata: file position, file mappings into the process,
etc.?

• How to re-establish pipes, especially encrypted pipes (if something was already sent on
them, thus TLS state is not clean)?

• How to re-establish TCP sockets, especially if they send TLS packets (same problem as
with pipes)?

• What to do with check-pointing multiple threads and processes? While one thread is per-
forming checkpoint, the other threads modify the state, leading to inconsistent state in the
check-pointed multi-threaded blob.

3.2.4.2 Application-Centric Management of State

As a consequence, we will focus on application-centric management of state. This requires that
applications need to be designed for TEE-based execution. This includes that an application
must be able to snapshot itself and later restore all essential parts to continue its execution. This
requires two extensions for each stateful application that we plan to execute within a TEE:

Saving TEE State: To enable a TEE to save its state, the manifest needs to include a file that
is sealed to MRenclave. This ensures that only the given enclave can read this file once
its integrity has been verified. In case the kubernetes infrastructure decides to shutdown a
Pod and the contained Containers, it sends a SIGTERM signal and calls the hook PreStop.
This signals to the TEE-enhanced application that termination is imminent and that its state
must be saved. To do so, the application serialises and stores its state in the sealed file.
After completing this dump of its state, it exits.

Restoring TEE State: When a TEE is started, the TEE examines the sealed file. If it detects a
sealed state, it de-serialises and restores the state. Then, it commences its prior execution.

CONNECT D4.2 PU – Public Page 30

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 4

Refined User Stories for Security-Critical
Features of CONNECT

Chapter 4 illustrates the important behaviours captured by our architecture by using so-called
”user stories”. As it was the case in D4.1 [10], the goal is to document the requirements and
functional specifications of different roles/user groups considered in the overall CCAM ecosystem
and, therefore, in the CONNECT deployment environment. Each user story outlines well-defined
usages by given user roles/groups together with their security and functional specifications. This
serves as a high-level description of requirements that need to be satisfied by the services and
architecture that is provided by CONNECT .

Changes compared to D4.1 [10]: To ensure that we document the complete set of requirements,
we have kept (and expanded) all functional specifications that were documented in the previous
version of this deliverable. Recall that the focus of the first version of CONNECT Trusted Exe-
cution Architecture was mainly on those safeguards needed for capturing the security and trust
requirements of the far-edge (i.e., Vehicle) while in the current version the necessary refinements
are described to also capture the best practices needed for the secure deployment of CCAM
services to the entire continuum - from the Vehicle to the MEC and Cloud facilities. Therefore,
we have made minor refinements and bug fixes for user stories documented in Sections 4.2-4.6
that focus on the: (i) secure establishment of an in-vehicle environment comprising ECUs to be
equipped with the necessary crypto primitives for securely participating in the overall trust as-
sessment process, and (ii) runtime attestation attributes extracted as trust sources to allow for
the dynamic quantification of node- and data-centric trust. The remaining user stories starting
with Section 4.7 include larger refinements or are newly added: In particular, the user stories
capturing the behaviour of the MEC (Section 4.8) are a new addition focusing on those levels of
assurance needed to be ensured towards establishing the trustworthiness of all MEC information
and functional assets. A summary of the status of all user stories is listed in Table 4.1.

4.1 Introduction to the CONNECT User Stories

The user stories outlined here are designed to illustrate the CONNECT functionalities that will be
used to provide trustworthiness evidence, both for the TAF and the TCH and how this evidence is
used to provide VCs and VPs that will be sent outside of the vehicle while maintaining its privacy.

The user stories are divided into: (a) general user stories – those that are agnostic to the type

CONNECT D4.2 PU – Public Page 31

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

User Story Status User Story Status User Story Status
Story-I Story-XI Story-XXI
Story-II Story-XII Story-XXII Revised
Story-III Story-XIII Story-XXIII Revised
Story-IV Story-XIV Story-XXIV New
Story-V Revised Story-XV Story-XXV New
Story-VI Story-XVI Story-XXVI New
Story-VII Revised Story-XVII Revised Story-XXVII New
Story-VIII Story-XVIII Story-XXVIII New
Story-IX Story-XIX Story-XXIX New
Story-X Story-XX Revised Story-XXX New

Table 4.1: Updates to the CONNECT set of User Stories compared to D4.1.

of hardware used, and (b) implementation based user stories – those that are specific to the
hardware that CONNECT will use when implementing these systems, i.e. Intel-SGX and Gramine
(starting with Story-XVI). Figure 4.1 shows a simplified diagram of the devices in the vehicle and
the software components in the main Vehicle Computer. Note that in the underlying design of the
CONNECT system each of the TEE-guard components - namely the IAM, the AIV and the TCH -
will run in an isolated environment with its own TCB. However, for implementation using Gramine
(described in [10]) we will have the entire TEE-guard running in a single secure container, having
the TCH and IAM components running as children Intel SGX is a TEE provided by Intel CPUs that
allows to execute a user-space process within a hardware-protected execution environment that
is called enclaves (Enclaves) of the AIV Enclave, as depicted in Figure 4.2. For better clarity, we
have opted to showcase the positioning and interactions between all components, comprising the
CONNECT TEE-GSE, with a different level of abstraction: Figure 4.1 highlights the overarching
architecture of the In-Vehicle Manager depicting the interactions between the CONNECT security
components that take place over different phases of the entire lifecycle of the vehicle mapped to
the user stories described in the following sections. Figure 4.2 captures a more detailed version
of this in-vehicle security architecture showcasing also the exact instantiation of all components
based on the use of the Grammine TEE technology.

We start with the general user stories. These are further sub-divided into: (a) those that are used
to illustrate how a CONNECT vehicle is setup and configured, (b) those that show how, once the
CONNECT vehicle’s systems are up and running, evidence of the trustworthiness of data and
applications is collected, assessed and communicated and (c) those that illustrate how, when the
trust level in an ECU falls, critical applications running on that device can be migrated to another
(more trustworthy) ECU.

General pre-requisite - Devices within the vehicle are all clearly identified and can be routinely
addressed.

4.2 User Stories for Preparing the Vehicle

To enable the CONNECT security architecture and services, the vehicle needs to be set up during
manufacturing and assembly. The following user stories describe key tasks that are required

CONNECT D4.2 PU – Public Page 32

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

A-ECU S-ECU

Zonal
Controller

S-ECU

Vehicle Computer

Application Layer CAM/CPM
Encoder/Decoder

Attestation
Integrity

Verification

CONNECT
Facility Layer

Trustworthiness
Claims
Handler

Identity
Authentication
Management

Misbehavior
Detection

Trust
Assessment
Framework

ECU Zone

OEM

C
C

A
M

 A
pplication C

ertificates
including inform

ation such as
version no, reference values, etc.

In-Vehicle Sensor secure on-boarding and TEE-GSE enrollment to IAM
Trustworthiness Evidence Extraction and Vehicle-Wide Trust (Re-) Evaluation

Figure 4.1: CONNECT In-Vehicle Logical Architecture capturing all functional specifi-
cations depicted through the described user stories.

during this phase. The outcome is a vehicle where all keys and software are installed and that is
now ready for operation.

Story-I: Configure a device ready for installation into the vehicle.

Objective: To configure a device ready for installation into the vehicle.

Motivation: Before installation into the vehicle all devices need to be configured with the crypto-
graphic keys that they need and the correct software installed. This will include application-
specific keys as needed by the Connected, Co-operative and Automated Mobility (CCAM)
applications and CONNECT keys used to provide evidence in a trustworthy manner. This
is the first stage in this process and is carried out by the Tier 1 Supplier . More details of the
protocols used are given in Section 5.3.

CONNECT D4.2 PU – Public Page 33

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

CONNECT DLT

Secure Container

Trust Source
Management

In-Vehicle ManagerCompute Node

Fa
ile

d
C

C
A

M
 A

tte
st

at
io

n
ev

id
en

ce

Secure Container

Local Misbehavior
Detection Service

Secure Container

CONNECT TEE Guard Security
Extensions

Identity &
Authentication
ManagementAttestation & Integrity

Verification

Trustworthiness
Claims Handler

Secure Container

V2X PKI Key
Management System

CAM/CPM
Encoder/Decoder

Zonal Controller 1
CONNECT TCB

Key
Management

System

Lidar

Camera

GNSS

LI
N

Steering

Acceleration

A
-E

C
U

S-
EC

U
s

S-
EC

U
s Radar

EC
U

Raw Data (Local
Perception) Runtime Attestation of ECUs

collecting perception data from
local sensors

At
te

st
at

io
n

Ag
en

t

Trustworthiness
Level

Expression
Engine

Prepare C
A

M
/C

PM
 and Trustw

orthiness
C

laim
s for V2X B

roadcast

Facility Layer

TAF

Tracer
Key

Restriction
Usage

Policy Engine

Zonal Controller 2
CONNECT TCB

Key
Management

System At
te

st
at

io
n

Ag
en

t

Tracer
Key

Restriction
Usage

Policy Engine

A
-E

C
U

Tracer

Key Restriction
Usage Policy

Engine

Key
Management

System

Tracer

Key Restriction
Usage

Policy Engine

Key
Management

System

Key Restriction
Usage Policy

Engine

Tracer

Figure 4.2: CONNECT CONNECT In-Vehicle Implementation Architecture depicting
detailed positioning and interactions between the CONNECT TEE-GSE components.
Detailed version of Figure 4.1 on page 33.

Requirements: The device should have a unique identity and an associated key pre-
programmed by the (Tier 2 Supplier) device manufacturer. The identity and associated
key pair are provided to the OEM when the device is supplied.

Story-II: Install and set-up the vehicle computer’s IAM.

Objective: To install IAM software on the vehicle computer and install the vehicle computer’s
long-term master key (VKM).

Motivation: The IAM is one of the TEE-GSE components and runs protected by a TEE . It man-

CONNECT D4.2 PU – Public Page 34

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

ages the installation and update of the different software components running on the vehicle
computer (as Gramine-enabled confidential containers) and stores the VCs containing their
configuration and attestation information (as extracted by the KBS). It also manages the
CONNECT range of keys which are used in the vehicle for attestation and to protect com-
munication between its various components. These keys are derived from the vehicle’s
master key. Installation and setting up the IAM and provision of the VKM is carried out by
the OEM as the first stage in configuring the vehicle computer and setting up its software.

Requirements: The vehicle computer (a powerful A-ECU) has already been configured by Tier
1 (Story-I).

Story-III: Install the vehicle computer’s software.

Objective: To install and configure the different software components that will run on the vehicle
computer.

Motivation: There will be a number of software components running on the vehicle. These will
include specific CONNECT containers (such as the AIV and TAF) and CCAM applica-
tions (such as Co-operative Adaptive Cruise Control (C-ACC) and Intersection Movement
Assistance (IMA)) running outside of a TEE (see Figure 4.1). They will all need to be down-
loaded, verified and configured with the keys that they need (Story-IV). The configuration
and attestation reference values will be provided by the OEM, or software supplier, in a
VC. The IAM will store the VC and use the information that it contains to confirm that the
software has not been modified and has the expected version number. Provided that these
tests pass successfully, the IAM considers the software component as securely enrolled
and exchange all application-specific and CONNECT keys.

Requirements: The IAM will need to be installed and configured beforehand. In addition, the
IAM will control this process and also manage any updates as they are needed. (Story-II).

Story-IV: Configure the necessary keys for the different vehicle com-
puter’s software components.

Objective: To provide the vehicle computer’s software components with the keys that they re-
quire.

Motivation: Each of the vehicle computer’s software components needs to be able to protect
its data and where necessary to sign that data to prove its provenance. So, for example,
the TCH will need to be able to verify the signatures on the VCs that it receives from other
components and to generate and sign VCs, or VPs, that it uses to send data to the other
components. For the TCH some data will be sent internally and can be ‘straighforwardly’
signed (e.g., using ECDSA) while other VCs will need to be anonymously signed. In order
to be able to anonymously sign the VC the TCH will need to obtain a credential from a
Privacy CA for its key. This will involve establishing a secure channel to the Privacy CA and

CONNECT D4.2 PU – Public Page 35

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

running the protocol that is used to issue credentials. Similar requirements also apply to
the other software components running in the vehicle, with the TAF and MBD also needing
to sign the VCs anonymously.

Requirements: Initially, the software should have been downloaded and verified. Part of this
configuration might be done as the software is installed (Story-III) while some may be de-
layed until the ECUs are also on-boarded and configured (those for securely communicating
with the ECUs). Where necessary the software component should be able to establish a
secure connection to a Privacy CA for the issue of credentials that allow the component to
anonymously sign its VCs.

Story-V: Secure on-boarding of an ECU into the vehicle.

Objective: As an OEM I want to enable the authentication and secure on-boarding of an ECU
into the vehicle and setup the necessary keys (both the CONNECT security-related keys
and the application-related keys)

Motivation: All ECUs need to be configured with the software and cryptographic keys that they
need (see [10]). The software to be installed will depend upon how the ECU is to be used
while the protocols used for on-boarding will vary depending on the type of ECU. These
protocols are described in Section 5.3.1 for S-ECUs and Section 5.3.2 for A-ECUs.

Requirements: The device has already been configured by Tier 1 (Story-I) and the vehicle
computer’s TEE-GSE has already been configured (Story-III).

Story-VI: Equipping the IAM with pseudonyms.

Objective: To obtain a set of pseudonyms from the Public Key Infrastructure (PKI) and install
them into the IAM.

Motivation: A mechanism for protecting the privacy of the vehicle has been standardised by Eu-
ropean Telecommunications Standards Institute (ETSI): messages that are sent outside of
the vehicle (for example CPM messages) should be signed using pseudonym keys. These
pseudonyms are obtained by connecting to the PKI and are then stored in the IAM for later
use. Note: the IAM will ensure that the pseudonyms can only be used under the condition
that the vehicle is attested to be in a good state – this will provide an efficient revocation
mechanism for the pseudonym keys.

Requirements: The IAM has already been configured by the OEM (Story-II).

CONNECT D4.2 PU – Public Page 36

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4.3 User Stories for Assessing Trustworthiness of Vehicle or
Services

An important functionality of the CONNECT architecture is to establish a Trust relationship
between different CCAM actors through verifying the Trustworthiness Claims included in the
CAM/CPM messages. Apart from establishing Trust relationships between different vehicles,
CONNECT scopes to allow authorised stakeholders to monitor the trustworthiness levels of Trust
Relationships between devices in the in-vehicle topology, thought storing evidences in the DLT.
The following user stories specify the desired functionalities to allow this trust assessment.

Story-VII: Obtaining and verifying trustworthiness (attestation) evidence
from the Vehicle’s devices.

Objective: For the AIV component to obtain and verify (attestation) evidence, that was collected
from the execution of an attestation task dictated by a Request For Evidence (RFE) in
order for the AIV to report to the TAF , the TCH and, if it is needed, the Distributed Ledger
Technology (DLT) (see Story-IX), on the devices (zonal controllers and the ECUs) that are
included in the attestation request. Storing data in the DLT occurs only in case of a failed
attestation event.

Motivation: In order to create a Trust Opinion (TO) for either a data item or a collection of nodes
of the in-vehicle topology, the TAF needs an attestation report over the attestation/trustwor-
thiness evidence from the devices providing that data. Similarly the TCH consumes the
attestation report comprising the verification status of various system properties, depicting
the Trust level of the attested system. More specifically, the TCH engages its harmonisation
mechanisms, in order to create a harmonisation/abstraction of the attributes of the engaged
devices and eventually create a VP of such a harmonisation. The components that are in-
volved need to acquire verifiable attestation evidences from the attestation agent of each
component. In CONNECT , as it was thoroughly described in deliverables D2.1 [12] and
D5.1 [11], a CCAM application/service requests the calculation of a Trust assessment by
the Trust Assessment Framework over a specific service for which a Trust model is already
being deployed. This functionality is crucial to CONNECT , as it scopes to provide Trust
quantification for a vehicle, establishing Trust relationships and eventually CCAM-wide Trust
quantification. These quantification is provided by establishing a Trust chain between CON-
NECT components, from the TAF to the AIV and eventually to the TCH. In order for this
Trust chain to be feasible on a zero Trust model, the Trustworthiness/attestation evidence
should be constructed in a verifiable manner by all engaged components, in order for the
system to be able to assess the validity of the provided claims. To this end, as described in
Chapter 5 section 5.4, CONNECTscopes to employ advanced cryptographic mechanisms
to ensure the Trustworthiness of the attestation evidence collected for a particular Request
For Evidence (RFE).

Requirements: For this user story to be feasible, all capable devices (A-ECUs and S-ECUs)
must have successfully completed the Secure On Boarding (section 6.8.1), in order to set
up their secret keys and the appropriate key restriction usage policies. Furthermore, the
AIV has to get a list of devices to be attested. This information comes from the TAF and is

CONNECT D4.2 PU – Public Page 37

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

part of the RFE. Additionally, the AIV needs to have information about how the attestation
evidence should be verified. Thus, the AIV must have acquired from the IAM a mapping of
all the possible attested devices to their reference values. For that purpose the AIV must
be able to securely connect to the TCB exposed interfaces of each device so as to be able
to collect the appropriate type of attestation evidence required.

Story-VIII:Trusting Verifiable Presentations.

Objective: VPs that a vehicle receives (which contains the VPs, for harmonised attributes, the
TAF ’s report (ATL) and the MBD Misbehaviour Report) should contain the cryptographic
guarantees of the necessary information depicting the level of trust of the vehicle sending
the VP, in order for the third party receiving it (either another vehicle, or the MEC, or some
other trusted third party) to be able to verify it.

Motivation: Depending on pre-defined policies, vehicles send CAM/CPM messages, that will
also include a VP reporting on the trustworthiness of the vehicle sending the data. Such
a construction is called T-CAM/T-CPM, as it’s the concatenation of a plain CAM/CPM mes-
sage and TCs. This VP will contain information extracted from the VCs provided by the
TAF (for its trust opinion), the MBD (for its misbehaviour report) and the TCH (for the har-
monised attributes). From these, the VP, selectively discloses the information needed for
the T-CAM/T-CPM consumer to be able to create its local trust opinion on the data ori-
gin without any privacy implications/breaches. Thus, each VP will be signed anonymously
including a linkability token, which eventually is going to be signed by the IAM using a
pseudonym key. As aforementioned, CONNECT is built on top of a zero Trust model. That
being said, each CONNECT component that contributes to the creation of the Verifiable
Presentation is not deemed by default Trusted. Thus, CONNECT components that are
hosted by resource-capable devices, have to activate the attestation enablers of their un-
derlying TCB to check whether or not they are not behaving maliciously. This is possible
through the newly developed key restriction usage policies, as described in section 3.2.
As a result each component is providing the necessary verifiable evidence, created from
the component’s unique secret key. The calculated VPs are depicting the Trust level of the
vehicle that sent them and will be used from another vehicle or the MEC to formulate their
own Trust Opinion from the received VP. As the VPs are the representation of a vehicle in
the formulation of a Trust graph, the verifier needs to have strong mathematical proofs (VP
verification) in order to Trust the VP producer.

Requirements: Each component of the TEE-GSE that will need to provide an anonymous sig-
nature, such as the Trust Assessment Framework (TAF), the Trustworthiness Claims Han-
dler (TCH) and the Misbehavior Detection component (MBD), will have to be successfully
securely enrolled. More specifically, each of these components have to set up its key re-
striction usage policy correctly and establish a trusted and authenticated communication
channel to a VC issuer, in order to obtain the necessary verifiable credential that represent
their hardware built-in attributes. The IAM will need to have obtained a pseudonym key
from the PKI (Story-VI).

CONNECT D4.2 PU – Public Page 38

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Story-IX: A vehicle stores the trustworthiness evidence of a failed attes-
tation task (executed as part of a Request for Evidence from the TAF) to
the Distributed Ledger (DLT).

Objective: The Attestation Integrity Verification (AIV) component, should store failed attestation
evidence onto the DLT . Storing failed attestation evidence in the distributed ledger enables
the OEM or any other Security administrator to process them, in order to pinpoint the vul-
nerability that was exploited and as a result identify and resolve zero-day vulnerabilities.
This enables the re-calculation of the Required Trust Level of affected Trust Relationships
and to keep track of the history of the trust state of a device like a reputation system to be
potentially used by the federated TAF.

Motivation: When an attestation task fails, there is strong indication of risk regarding the attested
device. For example, the integrity of the device does not meet the expected requirements.
In this case, the failed attestation evidence is stored onto the Blockchain infrastructure
so that it can be accessed later by the OEM or regulatory authorities for analysis of the
compromised device. Henceforth, such authorities can then take actions on the analyzed
malicious behavior, by either patching the existing software to fix found vulnerabilities, to
withdraw faulty hardware that leads to malicious behavior, or updating the RTL in collabo-
ration with the Trust Management Framework running on the cloud. Apart from the actions
mentioned above, reporting on failed attestation tasks is an integral part of revocation and
migration mechanisms (see Story-XIV). Attestation evidence for a device that is assessed
to have failed the attestation test(s) (static and, where appropriate runtime) will be stored
off-line with a pointer stored on the DLT. The data to be stored will be encrypted using ABE
to restrict access to authorised parties (those with the correct attributes), such as the OEM
or regulatory authorities.

Requirements: The AIV needs to be configured to have access to the distributed ledger. More
specifically the Attestation Integrity Verification component needs to be equipped with the
appropriate VCs, in order to be granted access to the DLT through ABAC. Additionally, the
AIV has to be configured to perform Attribute Based Encryption. To make this feasible in
the context of CONNECT use cases, during the secure on-boarding phase the IAM issues
a policy for each pre-defined Trust model, including the attributes under which ABE is going
to be performed.

4.3.1 Protecting Privacy during Trust Evaluations

While evaluating the trustworthiness of a T-CAM/T-CPM provider is important, disclosing all de-
tails of a vehicle is privacy invasive since it allows the verifier to identify a specific vehicle. As
described in deliverable D5.1 [11], apart from the well studied cryprographic properties such as
anonymity, unlinkability, untraceability and unobservability that are achieved through the tradi-
tional PKI-issued anonymous credentials, we are interested in the appropriate level of obfus-
cations regarding the exchanged trust-related information. This enables the continuous Trust
assessment, without exposing sensitive information about the vehicle’s architecture that can pos-
sible lead to numerous attacks.

CONNECT D4.2 PU – Public Page 39

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Story-X: As the TCH I want to self-issue a valid VP, comprising trustworthi-
ness (attestation) evidence adequately abstracted, so as to allow vehicle-
wide trust appraisals by any receiving entity.

Objective: The objective of this functional specification is for the Trustworthiness Claims Handler
(TCH) to be able to provide a Verifiable Presentation (VP). This VP is the cryptographically
enhanced harmonized attributes, TAF and MBD report. More specifically, from an RFE
the TCH receives an attestation report, a TAF report and possibly the MBD report. These
information is the baseline for providing evidence on the integrity of a Trust model. As an
expansion to this, in CONNECT we want to shut down every privacy implication that may
be raised. For that purpose we employ harmonization mechanisms, in order to obfuscate
the attributes of the attested Trust model and anonymized VC for the TAF and MBD report.
Employing such advanced mechanisms, CONNECT manages to provide evidence regard-
ing the Trust level of a vehicle in a zero-knowledge manner, as the TCH is not disclosing
any information that can lead to the fingerprinting of the vehicles architecture or identity.

Motivation: As described in the deliverable D5.1 [11], CONNECT aims to establish Trust rela-
tionships to a CCAM ecosystem, thought attestation mechanisms, for all the participating
vehicles, while preserving all aspects of the vehicle’s privacy. The TCH receives the attes-
tation report constructed by the AIV as the result to a Request for Evidence (RFE), that
was circulated by the TAF for triggering the collection of the necessary trustworthiness
evidence. The attestation report is consisted from a Verifiable Credential signed by the
underlying hardware based key of the AIV and the attributes and system measurements
of all participated devices depicting. The attestation report is comprising a service graph
chain investigating all Trust dimensions, for all the participating devices. These attributes
goes through harmonization mechanisms to converge in to a more abstract depiction of
the devices architecture. These harmonization mechanisms, will be focusing on grouping
together the same Trust properties of the attested system, so that they can depict the same
type of Trust related information but in a more abstract way. For instance, such mechanism
could be a special type of group based signatures or threshold signature schemes. The
approach that is going to be employed eventually, will be investigated in the future. It has
to be noted here, that this harmonization has to be verified by an external entity prior to
calculating its own Trust opinion. For this purpose the harmonized attributes are used to
calculate a Verifiable Presentation, with the TCH’s secret key, which will be anonymized so
as to preserve the privacy of the vehicle. To this end, CONNECT introduces a novel DAA
threshold signature scheme(see chapter 5 section 5.6), that leverages the cryptographic
characteristics of both the thresholds signatures and the DAA, in order to avoid the any
privacy implications regarding both the vehicle fingerprinting and identity.

Requirements: For the completeness of this functional specification, the TCH needs to know
the attributes of the attested ECUs so it can perform a correct harmonization each time
a VP needs to be constructed for broadcasting to the MEC-instantiated TAF and/or the
neighbouring vehicles. Apart from the disclosed attributes, the TCH needs to have suc-
cessfully completed Secure Enrollment, in order to have its key restriction usage policy set
up correctly.

CONNECT D4.2 PU – Public Page 40

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Story-XI: As the TAF I want to self-issue a valid trust opinion VC based on
the relevant trust sources.

Objective: The objective of Story-XI is for the Trust Assessment Framework (TAF) to be able
to provide anonymous and unforgeable signatures, over a calculated TAF report disclosing
the ATL of a Trust model that was attested.

Motivation: As aforementioned, a CCAM application may request from the TAF to calculate a
Trust Assessment Request over a pre-defined Trust model. With the freshly now acquired
attestation report, the Trust Assessment Framework calculates a Trust Opinion for this par-
ticular model, in order to be sent to the TCH and eventually outside of the vehicle. For this
purpose the Trust Opinion is signed with the secret key of the TAF and gets associated with
a link token to eventually construct an anonymized Verifiable Credential. By constructing
an anonymized Verifiable Credential, we enable both the verification of the relevant Trust
Opinion, and authorized entities (the link token’s issuer) to trace back to the signer’s identity.
Moreover, between the TAF and the TCH we don’t have any privacy implications, but for a
verification performed by an external entity, CONNECT needs to assure that no information
about the identity of the TAF that provided the VC. For this purpose, we need the VCs to
be anonymized, but with an accountability factor in case the TAF is acting maliciously and
necessary actions need to be made.

Requirements: For this usage story to be feasible the Trust Assessment Framework (TAF) needs
to know all the relevant trust sources. More specifically, the TAF receives a report from
the AIV component depicting all dimensions of Trust defined in deliverable D3.1 [9].The
Attestation report, includes a mapping of the trust attributes of the ECUs that provided the
attestation evidence, for the calculation of this Trust Opinion, along with a signature that
depicts that the AIV is indeed in a correct/Trusted state.Moreover, as the TAF needs to
provide its own anonymised signature, it needs to acquire its link token in order to be able
to associate it with each self issued Verifiable Credential. The link token is provided by a
Trusted Third Party (TTP), with which the TAF can establish a trusted and authenticated
channel.

Story-XII: As the MBD I want to self-issue a valid mis-behaviour report VC
for the data that is being sent.

Objective: The objective of Story-XII is for the Misbehaviour Detection component to be able to
provide anonymous and unforgeable signatures, over a misbehaviour report formed with
the data collected from the facility layer of the vehicle.

Motivation: A mis-behaviour report from the MBD is one of the methods used to provide trust-
worthiness evidence over a vehicle. More specifically, based on pre-defined policies the
facility layer will request from the Mis-behaviour Detection component to construct a Mis-
behaviour Report from the evidence collected by the zonal controllers and their underlying
ECUs. The constructed Mis-behaviour Report is sent to the TCH and is included to a T-CPM

CONNECT D4.2 PU – Public Page 41

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

message. Because the Mis-behaviour report is shared with other components/entities, it
needs to be created in a verifiable manner. To be more precise, for the finalisation of the
Misbehavior Detection report the MD calculates a digital signature over the mis-behaviour
checks for a particular observation and then associates the signature with a link token in
order to construct its verifiable credential. Moreover, as the Mis-behaviour Detection report
is included in a T-CPM message, a lot of privacy implications are raised, as any external
entity should not be able to extract any information about the identity of the signing MBD.
To resolve this issue, the VC provided by the Mis-behaviour Detection component needs to
be anonymised.

Requirements: For this user story to be feasible the Mis-behaviour Detection (MBD) component
needs to have a mapping of all the devices keys, that corresponds to communication in-
tegrity and data integrity. More specifically, the Mis-behavior Detection component expects
encrypted CAM/CPM messages, with the keys that IAM shared during the boot up phase of
MBD, ensuring the integrity of the received data. Moreover the MD needs to provide its own
anonymised signature. That being said it has to have successfully completed the secure
enrollment phase, where a TTP has issues a link token for a specific MBD. The anonymous
signature along with the link token, are used to construct the MBD’s Verifiable Credential.

Story-XIII: Verify a trustworthiness claims VP provided in a CAM/CPM
message.

Objective: As the receiver of a CAM/CPM message containing a trustworthiness claims VP. I
wish to verify the integrity of the evidence that I have received.

Motivation: Trustworthiness claims VPs are included in some, or all, of the CAM/CPM messages
to provide trustworthiness claims, produced from the trustworthiness evidence collected by
the AIV , MBD, IDS and TAF . Each of the aforementioned components are contributing
using their own secret key to the Trustworthiness claims, solidifying the validity the data
that are included. These claims are eventually signed by the IAM, using a PKI pseudonym
and then is sent to all neighbouring vehicles and the MEC. The contribution of all the relative
components has to be verified by the T-CAM/T-CPM message consumer, in order recreate
the Trust chain that was instantiated in the vehicle of the T-CAM/T-CPM message provider
enabling the calculation of the referral trust assessment (on the vehicle, or the MEC). It
goes without saying, that without this verification procedure the TAF cannot assess that
the T-CAM/T-CPM message provider has used the appropriate keys and was in a correct
configuration or that it matched the requirements of any other aspect of security that was
attested for this particular Trust assessment.

Requirements: The CAM/CPM message consumer needs to check the pseudonym used to
sign the VP, so as to assure that it is indeed a PKI-issued pseudonym. Furthermore, upon
the successful verification of the pseudonym signature, T-CAM/T-CPM message consumer
needs to verify the Verifiable Presentation (VP) as well. This verification process is broken
down in two phases. The first phase should be verifying the Verifiable Presentation (VP)
as a whole. The second is initiated in case the first phase fails to be compiled successfully.
In this phase the T-CAM/T-CPM consumer tries to verify the Verifiable Credential provided

CONNECT D4.2 PU – Public Page 42

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

by the TAF and MBD, in order to be able to trace back to the entity that failed to sign with
its secret key. This way, due to the associated link tokens, authorised entities can extract
the identity of the component that failed to create a valid contribution for the T-CAM/T-CPM
message and act accordingly.

4.4 User Stories for Re-Establishing Trustworthiness

Due to bugs, it may happen that parts of a system are compromised. In this case, it is important
to support recovery of unaffected system parts wherever possible. One tool for this recovery is
the migration of a critical CCAM application to another ECU. The goal of this story is to salvage
the protected state of the TEE (assuming it was not compromised) and re-establish a clone of
this TEE on another ECU.

Story-XIV: Migration of a CCAM application from one ECU to another.

Objective: When the IAM is notified by the TAF of a change in the trust level of a device, hosting
a CCAM service, that puts it below the RTL, he triggers the migration of the CCAM’s service
to an ECU with the appropriate RTL.

Motivation: As in CONNECT we are moving towards zero trust architecture, we need to ensure
that even when a complete ECU no longer meets the required trust level (RTL), the system
could recover its trustworthiness level (i.e., ATL). The goal is to then migrate a critical CCAM
component/service from a degraded ECU to another ECU that is still trustworthy. As other
ECUs capable of hosting the same application meet the Required Trust Level, we choose to
migrate the compromised ECU’s application to the one that fits best and still has sufficient
trust. More specifically, the TAF informs the IAM, as he is the Root node of the Trust tree
of each vehicle, that the ATL of a device hosting a CCAM service doesn’t meet the RTL, in
order for the IAM to take the necessary actions. That being said, the IAM has an interface
dedicated for calculating the policy under which a CCAM service can be migrated to an
other ECU. Such policy contains the original and target ECUs of the migration, the security
requirements under which the migration needs to be instantiated (which cryptographic pro-
tocol is going to be enforced a lightweight Diffie-Hellman or an Attribute-Based Encryption
scheme) and which parts of the application needs to be migrated.

Requirements: For this user story to be feasible, the IAM needs to know the Required Trust
Level (RTL) of all the devices that hosts a CCAM service. Similarly the Trust Assessment
Framework needs to be configured to send notifications regarding trust level changes to the
IAM. Moreover, for the critical information of the CCAM application (i.e., integrity/communi-
cation keys), the IAM has a dedicated interface that either specifies a set of attributes that
are shared between the list of ECUs that allow migration, so as to be encrypted with ABE
or it initiates a Diffie-Hellman between the engaged ECUs. When choosing to encrypt the
migratable data with ABE, the IAM needs to define dedicated attributes, which will allow the
migration of this service to be compiled just once, thus, preventing replay and DoS attacks.

CONNECT D4.2 PU – Public Page 43

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4.4.1 Binary Instrumentation & Device Data and Execution Flow Monitor-
ing

Story-XV: As the AIV, I want to make sure on the freshness of the monitored trustworthi-
ness evidence.

Objective: The Attestation Integrity Verification component should be able to prevent numerous
types of attacks. One of these attacks, is called replay attack where an adversary sends to
a verifier evidences from previous successful executions of attestation tasks.

Motivation: As described in the deliverable D2.1 the Trust Assessment Framework calculates
a Trust Opinion over an attestation report provided by the AIV . This attestation report is
based on the attestation/trustworthiness evidences that the AIV collected from all the de-
vices corresponding to this specific Trust Assessment Request. For this purpose, in order
to achieve a real time and accurate depiction of all aspects of Trust defined by the Trust
Assessment Request, the AIV has to be strict in the calculation of the attestation report,
ergo the verification of the attestation/trustworthiness evidence has to meet all the require-
ments defined in [10, Chapter 6]. One main requirement, defined by the IETF as well, is
the freshness of attestation/trustworthiness evidence, in order for the verifier (i.e., the AIV)
to be able to verify not only the correct creation of the digital signatures that he collected,
but also under which session they were created.

Requirements: For this user story to be feasible, all ECUs ,both A-ECUs and S-ECUs (not the
N-ECUs as they are not capable of providing attestation evidence at all), has been con-
figured correctly. More specifically, all capable ECUs should have successfully completed
the Secure on Boarding initiated by the Identity Authentication Management component, in
order to set up their secret keys and the appropriate key restriction usage policies. More-
over, the AIV needs to be able to create and map nonce values for all attested devices for
signing and verification purposes. It goes without saying that all the aforementioned must
be instantiated or supported by the underlying Trusted Computing Base of each device.

4.5 User Stories for Workload Protection Using a Trusted Ex-
ecution Environment

The following stories specify the desired protections provided by a TEE and the security-related
services that are provided by a TEE.

Story-XVI: Protection of Workloads on ECUs.

Objective: As an OEM, I want to protect security-critical applications in the vehicle against unau-
thorised modification and information leakage by executing it inside a TEE . The following
non-functional objectives should be guaranteed:

CONNECT D4.2 PU – Public Page 44

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

1. The integrity of the application and the integrity and confidentiality of its state must be
protected.

2. TEE-protected applications must keep their code paths/logic integrity-protected and
unmodified at all times.

3. TEE-protected applications must keep the data integrity-protected and confidential at
all times.

4. Selected TEE-protected applications must transparently receive encryption keys and
other secrets from remote applications/users, in order to e.g. decrypt input files and
encrypt output files.

Motivation: To protect critical applications against a potentially untrusted or compromised soft-
ware on the vehicle, we require hardware protection for critical workloads.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

2. No requirements are imposed on any software outside the TEE (including but not
limited to the container framework, the operating system, and the hypervisor.

Story-XVII: Integrity-verification of TEE Applications.

Objective: As an OEM, I want to ensure that a TEE only launches a given application if it was
able to verify the integrity of the application.

The following non-functional objectives should be guaranteed:

1. The OEM must be enabled to authorize a given application and the TEE must be able
to verify the integrity of this application.

NOTE: In this user-story, I mean the Gramine’s gramine-sgx-sign tool.

Motivation: A security-critical application is deployed along a supply chain and can be modi-
fied in transit. To protect against this risk, we require end-to-end integrity guarantees for
applications to be executed within a TEE. This is usually achieved using digital signatures.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

2. The OEM must have access to a corresponding signing key and tools for signing a
trusted application.

CONNECT D4.2 PU – Public Page 45

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Story-XVIII: Attestation of Applications running in a TEE.

Objective: As a OEM, I want to be able to remotely validate the integrity of an application that is
executed within a TEE .

The following non-functional objectives should be guaranteed:

1. The attestation service ensures that the OEM obtains a correct and fresh crypto-
graphic checksum of the application.

2. The correctness and freshness of the checksum is guaranteed by the hardware and
does not depend on any other software component.

3. As a Application Developer I want to rely on existing TEE-attestation solutions that
seamlessly generate TEE-specific attestation evidence and verify this TEE-specific.

4. TEE-protected applications must create TEE-specific attestation evidences to prove
themselves to other applications.

5. TEE-protected applications must verify the trustworthiness of other TEE-protected ap-
plications.

Motivation: Since the application consists of software that can be changed.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

Story-XIX: Support for Development and Debug.

Objective: As an Application Developer of applications for a TEE (on the vehicle main computer,
in an ECU, on the MEC, or on other platforms supporting a TEE), I want to develop and test
the applications (such as TEE Guard, AIV , TAF) in a familiar non-TEE-based environment
and then seamlessly deploy these applications as stated in Story-XX. The following non-
functional objectives should be guaranteed:

1. For seamless migration, support for debug and test should not disrupt the normal
development and test processes deployed today.

2. During debug, the security policy of the TEE is not enforced and thus applications
should not yet contain critical secrets.

3. The story should also be enabled for TEE-applications packaged in containers.

Motivation: Deploying an application within a TEE reduces flexibility since, e.g. a manifest has
to first be signed with a specific key. During development, user friendly deployment and test
is important to maintain the productivity of the developer.

Requirements: This user story does not impose any requirements since Story-XIX should work
on any development machine.

CONNECT D4.2 PU – Public Page 46

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4.6 User Stories for Creating a Trusted Execution Environ-
ment

The following stories describe how a TEE is designed and how existing applications can be
migrated into it.

Story-XX: Migrating an Application to Gramine with Gramine tools

Objective: The Application Developer converts an existing Linux-style application into an ap-
plication bundle that can be executed within Gramine (“graminize an application” in the
following). The following non-functional objectives should be guaranteed:

1. Security: After graminizing an application, the application can only be executed with
the specified security guarantees enforced (i.e. confidentiality and integrity are usually
protected using the Intel Software Guard Extensions (Intel SGX) TEE .

2. Ease of use: Graminizing an existing application should involve minimal effort. Port-
ing the application to run inside Gramine SGX environment must involve minimum
engineering effort. This requirement is satisfied by Gramine as follows: the applica-
tion does not need to be re-written or re-compiled (an original binary can run inside
Gramine SGX). The only effort required is writing a corresponding manifest file that
configures the security posture of the application, the lists of files the application can
access, and the properties of the SGX enclave in which it will run.

3. Configurable protection: Developers should be able to configure the protections that
are enforced for a given application.

4. Ease of deployment: A graminized application should be easy to deploy and execute.
Porting the application to run inside Gramine SGX environment must provide flexibility
to fine-tune application and SGX-enclave parameters and to block or allow specific
files to be accessed. This requirement is satisfied by Gramine’s manifest syntax, which
has more than 50 different knobs and allows very fine-grained management of files.

5. Porting applications to run inside a TEE must involve minimum engineering effort.

6. Porting applications to run inside a TEE must provide flexibility to fine-tune application
parameters and configurations, to block or allow specific files to be accessed, to block
unused sub-systems, etc.

The main task of Graminising an existing application is to write a correct manifest file. After
the creation of the manifest file, the application developer can invoke tools to generate
Gramine- and SGX-specific files.

Motivation: By packaging applications within Gramine, they can be executed in an Intel SGX
enclave and can thus benefit from the hardware protection of Intel SGX (or other backends).

Requirements: This user story does not impose any requirements since Story-XX should work
on any development machine.

CONNECT D4.2 PU – Public Page 47

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Story-XXI: Configuring the Security of a TEE

Objective: As an OEM, I want to define the security posture (aka security policies that are en-
forced by the TEE) for each individual application.

The following non-functional objectives should be guaranteed:

1. The OEM can specify specific files as read-only and integrity-protected, some files as
transparently encrypted with specific keys, and some files as completely inaccessible.

2. The OEM can specify sub-systems that are required by each application. E.g., I want
to disable spawning children if the application never uses this functionality, or to disable
eventfd signalling if the application never uses this functionality.

3. The OEM can hard-code the command-line arguments and/or environment variables
passed to each application, to reduce the number of possible control paths taken by
the application.

Motivation: One important goal is to reduce the TCB of the application that is executed in a TEE .
The goal is to only require trust into the TEE hardware, other TEE services, and specifc files
and services with well-defined security guarantees. This is achieved by specifying the TCB
in a so-called Manifest File.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

4.7 Stories for Upgrading and Migrating Protected Workloads

We now describe capabilities to upgrade software or offload TEE workloads.

Story-XXII: Upgrading the TEE Software.

Objective: As the CCAM application, I want to migrate application state from one TEE on a
given computer to another (potentially upgraded) TEE on the same computer.

The following non-functional objectives should be guaranteed:

1. The migration can migrate from one software version to a later version.

2. While upgrading one TEE instance, it must be ensured that only one new instance is
started and no more than one instance is authorized as the master/reference at any
point in time.

3. It must be ensured that the old TEE is blacklisted and will no longer be seen as the
master/reference.

CONNECT D4.2 PU – Public Page 48

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4. Both version must be authorized by the OEM.

5. During this migration, integrity of program and state and confidentiality of the state
must be protected.

Motivation: To introduce new features or fix bugs, the software that is executed within a TEE
sometimes needs to be updated. This story enables secure upgrade - from one authorized
version to an authorized successor version. For this updgrade it is critical to ensure that
software and state remain protected and can only be importanted into a TEE that is secure
enough.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

2. The OEM has authorized the upgrade.

3. When receiving a SIGINT or SIGTERM signal, the applications running in the TEE
can save their state into a set of specified files. Note that for C, this can be achieved
automatically, stateful software in languages like GOLANG or Python require explicit
support for saving their state before exiting.

4. The applications are able to load their saved state from a set of files at startup.

Story-XXIII: Migrating the TEE Software.

Objective: As a CCAM application, I want to migrate a running TEE-protected application’s state
from one computer to a different computer while protecting the state during this transition.

The following non-functional objectives should be guaranteed:

1. The migration can migrate from one machine to another machine while protecting state
and sofware.

2. Both version must be authorized by the OEM.

3. During this migration, integrity of program and state and confidentiality of the state
must be protected.

4. Upon migrating from one TEE instance to another TEE instance, it must be ensured
that only one new replica is started.

5. Upon migrating from one TEE instance to another TEE instance, it must be ensured
that the old replica is terminated.

Motivation: One objective of CONNECT is to allow workload offloading from the vehicle to the
MEC. This can include security-critical applications that are protected by a TEE. To allow
this new feature, we plan to extend the Gramine Library OS to allow for protected migration
of workload.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

CONNECT D4.2 PU – Public Page 49

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

1. The computer must be equipped with hardware-based Trusted Execution Environment
(TEE) capabilities.

2. The application to be migrated is required to support saving its state into files at exit
and restoring the state from files at start-time. For C, this can be automated. Other
languages (GOLANG, Python) may require explicit support.

4.8 User Stories for Protection of Workloads on a Mobile
Edge Cloud (MEC)

The following user stories specify the desired behaviours of TEEs on Mobile Edge Clouds (MEC).
The MEC can host container workloads on a security-enhanced Docker infrastructure that is
designed and implemented by CONNECT . Services hosted on the MEC can provide services that
are compute- or communication-intensive. One example is services that coordinate collaboration
between multiple vehicles such as automated management of an intersection. Another option
where the MEC proves useful is offloading compute- or communication-intensive workloads from
a vehicle by migrating them to the Edge infrastructure. One example for such a service is re-
training of Machine Learning models based on vehicle data and remote data.

A core concept that we use are containers that are secured using a hardware TEE. Our goal
is to allow users to design a normal Docker container image and then convert this image into a
security-enhanced container image. When a container is created and started using this image, it
is automatically executed in a TEE like Intel SGX. Still, by enhancing the original container, our
goal is to enable seamless Docker-style management. I.e. the infrastructure should be enabled
to create, start, stop, pause, and migrate a given security-enhanced container.

We now detail the individual user stories that outline the functionality required by the MEC.

Story-XXIV: Creating a docker image that implements event-triggered
management of its own state.

Objective: As the Application Developer , I want to be able to design and implement containers
that can (a) be managed by a Kubernetes cluster while (b) keeping a consistent state that
can later be security-protected. The following non-functional objectives should be guaran-
teed:

1. When Kubernetes signals the container to shutdown (e.g. using SIGTERM), the con-
tainer should save any critical state to a set of well-defined files and then exit gracefully.

2. When Kubernetes re-starts a container on a given pod that is part of a cluster, the
container is required to restore its state and any critical network connections given the
well-defined set of files containing a prior saved state. This may include checking and
repairing the state in some cases (see example below).

3. When Kubernetes re-starts a container on a different pod/cluster, the container is re-
quired to restore its state and any critical network connections given the well-defined
set of files containing a prior saved state.

CONNECT D4.2 PU – Public Page 50

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4. When importing a state, the software verifies that the state has been exported/saved
by a compatible software version. I.e. exporting and then importing the state maintains
its consistency.

5. Optional: Rollback-prevention: Once the container has been upgraded to a given soft-
ware version, it will no longer start with any outdated version.

6. Optional: Singleton guarantees: Only a given set of authorised instances are allowed
to be active at any point in time.

Motivation: The (security-enhanced) container infrastructure that we envision will start, stop,
pause, and migrate given containers. For stateless containers, this is easy since they can
be killed and restarted without loosing any interesting state. However, many security-critical
applications such as a keystore require state to be kept. Managing this state over the life-
cycle of the container is important for the security of the contained applications.

Some programming languages (e.g. C) allow hibernation of a running application into a
file. For other languages (e.g. Golang, Python) this is not guaranteed to work. As a
consequence, we will offer developer developer support and guidance (for Golang, Python,
C) that allows developers to design and implement container images that support saving
and restoring its state explicitly.

Assume that a container contains a key store for cryptographic keys (that constitute the
state). To be manageable, the container is required to process a SIGTERM signal at any
time. Upon receiving this signal, it will ensure that the keystore on disk is up-to-date and will
exit. While this sounds simple, there are corner cases that require transactional behaviour
in a distributed system. E.g. if a new key is issued, the container may be killed at any time
(e.g. due to a power failure). In this scenario, one still aims to achieve consistent overall
behaviour [26]. This can mean that a new key is first saved to disk before signaling success
to a key management server.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. The developer has specified the essential set of files that need to be saved and re-
stored.

2. Upon SIGTERM the application saves its state into those files.

3. Upon restart, the application restores its state from those files.

4. Optionally, the application may use an external service to prevent cloning and rollback
of the given service.

5. For rollback protection, an external monotonic counter service is required. The soft-
ware inside the container can ensure that it only starts if it contains the latest software
version. The design of anti-rollback will be outlined in 6.3.2.

6. For singleton instances, a external trusted service is required to ensure that only one
authorised instance can be started at any point in time.

Story-XXV: Converting an existing Docker image into a protected Docker
image.

CONNECT D4.2 PU – Public Page 51

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Objective: As an Application Developer , I want to transform an existing container image into
a new container image that can be used to create a container that is executed in a TEE-
protected environment that ensures that container integrity and confidentiality is protected
at run-time.

The following non-functional objectives should be guaranteed:

1. Porting a Docker container to run inside Gramine SGX environment must involve min-
imum engineering effort.

2. Deployment of the “graminized” Docker container must involve minimum engineering
effort. This requirement is satisfied by the GSC’s design – it does not modify any
properties of the original Docker image. Thus, the GSC-generated Docker image may
be deployed in the exact same way as the original Docker image.

3. The resulting image includes a manifest that defines the container security properties
and required metadata for integrity and confidentiality protection.

4. The desired security is configurable.

This user story will be implemented using the GSC tool as follows: the original Docker
image does not need to be re-written or re-built. The only effort required is writing a minimal
manifest file that contains the desired properties of the SGX enclave. The GSC tool expands
this minimal manifest file to a proper Gramine manifest, by querying the relevant information
from the Docker image metadata (like the lists of files). This ensures that a proper manifest
is created that ensures that the file containing state is encrypted/sealed.

One important point to consider during this conversion is “what key to use for sealing the
state”. There are two potential cases:

Container bound to CPU: If we plan to bind the container to a specific CPU, then we need
to tell Gramine to auto-encrypt/seal the given file using the MRenclave key. This key
is specific to the given SGX instance and does not allow migration.

Container migrateable: If we plan to allow migration of state between different machines
(under the condition that the container is authorized by the same signer), then we
need to tell Gramine to auto-encrypt/seal the given file using the MRsigner key.

Motivation: Vehicles may want to offload critical tasks (packaged as docker containers) onto
MECs. In this scenario, the MEC may not be fully trusted. To enhance the security guaran-
tees, TEE-protected execution should be enabled for the the given containers.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. We require that the container to be graminized handles its state properly. I.e. upon
SIGTERM it will save its state into the specified set of files and upon start it restores
its saved state (see Story-XXIV)

Story-XXVI: Creation and protection of containers on the MEC based on a
graminized image.

CONNECT D4.2 PU – Public Page 52

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Objective: As a MEC service provider, I want all hosted security-critical CCAM applications (run-
ning in the deployed containers) to be protected by hardware-based TEE, keeping the orig-
inal CCAM service provider agnostic to the underlying container-protection mechanisms.

The following specific goals are relevant:

1. Automated tools (compatible with container management technology) must be avail-
able to support the secure creation of TEE-protected containers at the MEC in an
efficient/seamless way (see section 3.2.2).

2. The integrity of the application and the integrity and confidentiality of its state to be
protected.

3. MEC service deployment to be feasible through TEE-protected application containers
in an orchestration environment such as a Kubernetes cluster.

4. Continuously monitoring of the integrity of the applications across the lifetime of the
associated container.

5. Execution of protected application containers to entail no risk for leakage of sensitive
private data

Motivation: Automotive (or other type of) applications running on the MEC, offering critical data
to the end-user, need to be protected against a potentially untrusted or compromised MEC
host environment.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. A software mechanism to build confidential containers manageable by orchestration
environments (such as Kubernetes).

2. The MEC infrastructure (host) nodes to be equipped with hardware-based Trusted
Execution Environment (TEE) capabilities.

3. No further requirements are imposed by the user story on any software outside the
TEE (including but not limited to the container framework, the operating system, and
the hypervisor).

Story-XXVII: Life-cycle management (LCM) of a confidential container at
the MEC to be carried-out in an efficient way (i.e., similar to the legacy
containers’ LCM).

Objective: The LCM operations of a legacy as well as a confidential container to be carried-out
at the MEC with equal programming effort and similar performance.

The following specific goals are relevant:

1. TEE-protected containers hosted at the MEC, to be managed seamlessly during their
lifecycle by an application container management environment (e.g., Kubernetes clus-
ter) – (see Section 3).

CONNECT D4.2 PU – Public Page 53

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

2. LCM operations (e.g., scaling in/out capabilities for the TEE-protected containers)
should not negatively affect the quality of the provided service (QoS), nor influence
the involved SLA.

3. Confidentiality along the LCM operations of TEE-protected containers should be en-
sured seamlessly (no extra effort compared to the legacy case).

4. LCM operations of (the resulting) confidential containers to entail no risk for leakage
of sensitive private data.

Motivation: To practically fulfil the need for protecting (automotive) sensitive workloads, facili-
tated by confidential containers, the imposed programming/performance overhead during
their LCM operations should be minimal; otherwise, confidential containers would be of
limited applicability.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. Optional: Prevention of container cloning and rollback.

2. An application container needs to implement secure event-triggered management of
its state.

3. A confidential (e.g., graminised) container needs to ensure that its state remains pro-
tected across all LCM operations.

Story-XXVIII: Upgrading a protected container on the MEC.

Objective: The Cloud Administrator is enabled by the Application Developer to securely upgrade
the software inside a security-protected container. The following non-functional objectives
should be guaranteed:

1. After upgrading, the container continues to operate and has imported the state of the
prior software version.

2. Outside the enclave, the state remains encrypted and integrity-protected at all times.

3. Only software upgrades that are authorized by the signer can import a given state.
Technically this means that the signer of the enclave (a) signed the new software
version and (b) enabled the new software version to import state from a given version
of another software.1

4. Optional: Only one instance of the container exists at any point in time.

5. Optional: Rollback-protection: After the upgrade, the system prevents launching older
versions of the container.

The actual upgrade of a container includes the following steps:

1. The original container dumps its state and seals it to the MRsigner key. This exports
includes the software and version othat is exporting the state.

1The sealing to MRsigner only ensures that the same authority signed both containers. Extra mechanisms need
to ensure version compatibility.

CONNECT D4.2 PU – Public Page 54

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

2. The Cloud Administrator create a fresh container using an upgraded image.

3. The MEC start the fresh container - inputting the sealed state to allow the container to
initialise itself.

4. Optional: The container verifies singleton requirements and exits while discarding its
state if they are not satisfied.

5. Optional: The container verifies that the latest software version is present (to prevent
rollbacks) and exits while discarding its state if an outdated software has been used.

6. The container checks the compatibility of the versions and then imports its state.

Motivation: The Cloud Administrator is responsible for managing capacity of the MEC and keep-
ing the installed software up-to-date. As part of this responsibility, the admin may want to
upgrade the software in a container while maintaining the security and consistency of the
contained state.

Requirements: This user story imposes the following requirements from the underlying compo-
nents and services:

1. We assume that the container can manage its own state (see Story-XXIV).

2. For rollback protection, an external monotonic counter service is required. The soft-
ware inside the container can ensure that it only starts if it contains the latest software
version. Anti-rollback will be detailed in Section 6.3.2.

3. For singleton instances, a external trusted service is required to ensure that only one
authorized instance can be started at any point in time. Guaranteeing singleton exe-
cution will be detailed in 6.3.1.

Story-XXIX: Migrating seamlessly a confidential container in a different
host, or offload a task from the vehicle to the MEC.

Objective: The migration process requires certain assurances as it pertains to secure state
transfer from a host A to a host B. To achieve that, a fresh target container should be estab-
lished, creating a new instance from the same image but without any existing state, while
key agreement mechanisms should be defined among the two hosts, the source and the
target system, to protect the communication. When the state has been successfully trans-
ferred from the target system, the old container should be terminated in the source system.
The same mechanism is also used for task offloading between vehicle and graminised Dig-
ital Twin (DT)-TAF .

Motivation: Whenever an application/enclave running either on the vehicle or the MEC, has to
be migrated to a different host (i.e., Vehicle to Vehicle, ECU to ECU and Vehicle to MEC)
based on its policies (i.e., low response time), this process should happen in a seamless
yet secure manner, while maintaining state of the container. In addition, some cases may
not require the migration of the entire container but the offloading of a specific task from
the vehicle to the MEC (i.e., a CCAM application or the Digital Twin TAF). The key used for
protecting the authenticity of the state of the container is linked to the hardware.

To achieve this, CONNECT proposes the introduction of an auxiliary application, the Migra-
tion Service, which as defined in Chapter 2, is part of the TCB. This application is devoted

CONNECT D4.2 PU – Public Page 55

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

to the mediation of the migration process, in order to i) verify the authenticity of the state
of the process to be migrated (i.e., leveraging the MR Signer key), and ii) assure the con-
fidentiality of the communication between the host and the target enclave (i.e., utilising an
enclave to enclave key).

Requirements: For this user story to be feasible there are certain steps that have to be ac-
complished. To begin with, dedicated (symmetric) keys are leveraged to ensure both the
authenticity of the migratable state as well as the confidentiality and authentication on the
communication exchange, between the host and the target enclave. The type of key, utilised
to ensure the authenticity of the state of the migratable function, is called the MR Signer key
and it is linked to the hardware (i.e., Intel SGX). Furthermore, preventing rollback mecha-
nisms is crucial to avoid the migration of obsolete container versions. This is essential
to ensure that only the most up-to-date and secure containers are migrated, addressing
potential security risks associated with the use of outdated versions.

Apart though from the keys that are necessary to ensure protection, several steps are
needed to facilitate this migration. These steps include the deployment of a trusted medi-
ator (i.e., the Migration Service deployed within the TCB), which facilitates; thus provides
guidance and orchestrates the secure migration process. Additionally, the target enclave
should be equipped with a vanilla application, from the backend application system. Lastly,
to cover the case of task offloading for trust calculation migration (i.e., Digital Twin TAF ,
including the Federated TAF as elaborated upon in D3.2 [15]), synchronisation of the trust
model/state between two enclaves is needed.

Story-XXX: Validate the integrity of a Secure Container and Workload
Identity of the deployed application.

Objective: All confidential containers should be verified in terms of integrity and workload iden-
tity for the deployed application. This task is performed by the consumer (i.e., vehicle),
desiring to access a trustworthy service. Towards this direction, the public part of the Ku-
bernetes key (i.e., as released by the Kubernetes Key Management System during the
secure launching) should be bound to the certificate (also released by the Kubernetes Key
Management System during the secure launching). This binding ensures the correctness
of the deployed container. Furthermore, to enable the validation of identity on the running
workload, the key of the enclave (i.e., for example the AIV, which exports trustworthiness
evidence) is bound to the certificate.

Motivation: In scenarios involving multiple instances of the same CONNECT service being de-
ployed in the same MEC infrastructure, it is crucial to verify that the received response
originates from the intended container. This verification process ensures that the results
align with the specific instance of the application intended to perform the task. CONNECT
establishes a robust mechanism to validate the source of responses, maintaining the in-
tegrity and accuracy of outcomes in such scenarios. This mechanism provides protection
against attacks such as replay attacks, which could be launched by a malicious enclave, in-
tercepting traffic. To be more precise, on the MEC there can be instantiated multiple AIVs,
deployed in separate containers in order to provide Trustworthiness evidence to the Vehi-
cles TAF. To this end, it is crucial to provide an in-toto Attestation toolkit, so as to enable
every working container, in this case an AIV container, to provide Verifiable Evidence both

CONNECT D4.2 PU – Public Page 56

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

over the Identity of the MEC, that is handling the offloading challenge, and over the identity
of the container that carried out the workload.

Requirements: For this user story to be feasible the MEC ignites and has to successfully com-
plete the enhanced Secure Launching of Confidential Containers, an extension of the Se-
cure Launching of Confidential Containers (see Chapter 2 Section 2.3.1). More specifically,
when launching a container that needs to provide such verifiable evidence, upon completing
the standard algorithm for the Secure Launching of Confidential Containers, the container
proceeds to complete the enhanced version pf the Secure Launch. To be more precise,
when a container acquires its Kubernetes secret key, the container sends to the Kuber-
netes master compute node, through an encrypted and authenticated channel, the public
part of the containers Attestation Key. The Kubernetes master compute node, creates a
certificate over a mapping of the Kubernetes secret key and the Attestation Public key. This
certificate is wrapped in the form of a Verifiable Credential so as to append more attributes
if necessary and eventually the container can provide Verifiable Evidence that is bound to
its identity. The Verifiable Evidence produced by the container is then signed with the PKI
by the IAM, enabling MEC identification as well.

CONNECT D4.2 PU – Public Page 57

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 5

The CONNECT Cryptographic Protocols
for Enabling Dynamic Trust Assessment

Building on top of the previously described functional specifications required to enable CONNECT
to provide CCAM-wide trust measures, we now give details of the first set of trust extensions that
will be used to establish these trust-centric automotive networks. These trust extensions will
enable the CONNECT TAF to provide dynamic trust assessment of all of the nodes (HW and
SW) comprising the CCAM ecosystem. Recall that CONNECT extends the stand-alone vehicle
domain to safe and security solutions distributed from Vehicle to MEC and Cloud facilities so as
to support the envisioned automation of connected vehicles: This vision is enabled by the ve-
hicle’s communication with other entities formulating the Vehicle-to-everything (V2X) landscape.
The resulting “CCAM continuum” paradigm seeks to seamlessly and securely combine the avail-
able hardware and software (from the in-vehicle sensors to the MEC virtualised infrastructure) to
support the deployment and operation of certified (using ISO/SAE 21434 [1]) CCAM functions.
Whereas the collective consideration (treatment) of the continuum resources presents opportuni-
ties for increased performance and a higher degree of automation, the individual Software (SW)
and Hardware (HW) infrastructure may exhibit diverse yet dynamic trust states; and when those
infrastructures are brought together to make-up the continuum strong security mechanisms need
to also be deployed for asserting to the correct state of all these functional assets.

For this to be achieved, it will require secure life-cycle management of:

• the identification of the type of trust evidence to be collected.

• the trust assessment of any deployed CCAM function (based on the defined trust mod-
els capturing the relationships and inter dependencies of all internal components, as de-
scribed in D3.2 [15]).

• the creation of mechanisms for capturing the devices (HW and SW) trust levels and
adapting to changes, anchored to decentralised Roots-of-Trust, and subsequently ele-
vated to the continuum level.

• the devices in the system to be equipped with an underlying Trusted Computing Base
which will offer secure measurement and reporting of a devices’ (integrity) state focused on
the provision of the necessary trustworthiness evidence for that device.

• the ability to share trustworthiness evidence both: (i) with any component belonging to
the same domain (i.e., in-vehicle E/E domain), without any privacy protection, and (ii) with

CONNECT D4.2 PU – Public Page 58

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

external TAF instances (of other vehicles or trust assessment services instantiated
on the MEC) with the necessary level of abstraction and strong privacy safeguards
so as to avoid the identification and linking of trust-related evidence to their (vehicle) source
that can potentially lead to further implementation disclosure attacks [11].

More specifically, we focus on the design of a novel set of CONNECT crypto and attestation prim-
itives, supported on the vehicle side, for ensuring the trustworthiness of the data they provide
- both as it pertains to kinematic and perception data consumed by the deployed CCAM func-
tions, but also to (attestation) evidence depicting the “trust state” of components in the system.
CONNECT Trustworthiness Claims (TCs), provide evidence (encoded as Verifiable Credentials,
as detailed in D5.1 [11]) of the devices’ correctness [22]; from their trusted launch and configura-
tion to their runtime attestation of both behavioural and low-level execution properties that act as
sources of trust to be used by the local TAF. Going beyond the current state-of-the-art in remote
attestation schemes, CONNECT builds a harmonised TCB that exposes a well-defined TEE De-
vice Interface (TDI) linked to the runtime monitoring of an extended set of device characteristics
that serve as evidence for the deployed trust models. This translates to the governance of the
security elements (e.g., TEEs), instantiated in each capable node, for the monitoring of only that
evidence needed for the evaluation of a specific trust property of interest. For instance, CON-
NECT Enhanced Configuration Integrity Verification (CIV) (Section 5.4) allows for the provision
of strong security claims on the integrity of the target device while overcoming the barriers of
configuration privacy and scalability. This is achieved through the introduction of trusted com-
puting abstractions, called policy-restricted attestation keys [21, 20], that dynamically restrict
the use of a devices’ attestation key to policies depicting the expected state of the device; i.e.,
holding the reference value of the expected configuration measurement of the binary to be at-
tested. This allows for the (remote) verification of the devices’ runtime configuration conformance
without revealing any (runtime) configuration information. Such a capability is further enhanced
with additional privacy abstractions that allow the sharing of trustworthiness claims with “exter-
nal” entities (i.e., outside, for instance, of the target vehicle) in a zero knowledge manner that can
be used for verifying the trust state of the vehicle’s operational landscape, without disclosing any
sensitive information about the state of any (in-vehicle) sensor and ECU that might leak details
valuable to an adversary in their attempt to compromise the system. This feature is based on a
novel crypto scheme that protects trustworthiness claims with zero-knowledge proofs (signa-
tures) for constructing presentations. This focuses on asserting to the trust attributes of a vehicle
(e.g., integrity, resilience, etc.) modelled as abstractions. These abstractions are associated with
adequate proof of possession of the corresponding attribute attestations, without revealing any
details of the attribute values. Towards this direction, as will be detailed in Section 5.5, CONNECT
leverages Threshold Direct Anonymous Attestation (DAA).

A common denominator to all these crypto elements is the successful construction of the nec-
essary keys and runtime security controls for safeguarding the integrity of the application and
attestation processes themselves. This is achieved through CONNECT ’s enhancements to the
(OEM adopted) enrolment process of an ECU into the in-vehicle network, enabling the verification
of the underlying RoT of the ECU and all other primitives. In turn, this facilitates the subsequent
trust evaluation and quantification of all internal (SW and HW) components.

CONNECT D4.2 PU – Public Page 59

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

CONNECT User Stories Relevant Protocol & Crypto Scheme
Story-I : Configure a device ready for instal-
lation into the vehicle.
Story-V: Secure on-boarding of an ECU into
the vehicle.

Sections 5.3.1 and 5.3.2, and in particular Figures 5.1 and 5.3,
depict the process followed during the enrolment of an ECU
into the in-vehicle network and the construction of all necessary
crypto primitives (including both application-and security-related
keys) needed to support the secure interactions of the target
component with the other elements belonging in the same do-
main (e.g., same “zone” capturing a specific set of vehicle func-
tionalities; e.g., breaking). All CONNECT security-related keys
(policy-restricted attestation keys) are also created for allowing
the secure and privacy-preserving sharing of trustworthiness ev-
idence.

Story-VII: Obtaining and verifying trustwor-
thiness (attestation) evidence from the vehi-
cle’s devices.
Story-XV: As the AIV, I want to make sure
of the freshness of the monitored trustwor-
thiness evidence.
Story-XVIII: Attestation of applications run-
ning in a TEE.

While S-ECUs will use the standard attestation mechanisms,
A-ECUs (including zonal controllers) will use the CONNECT
Enhanced Configuration Integrity Verification (CIV) scheme de-
scribed in Section 5.4 for allowing the provision of verifiable at-
testation attributes on their correct configuration state. These
attributes, constitute one of the core trust pillars/sources based
on which the TAF operates. Guarantees on the “trusted config-
uration state” of a device are provided through proofs of confor-
mance; i.e., signatures constructed through the use of attesta-
tion keys protected by appropriate key restriction usage poli-
cies predicating their use if and only if the host application is
at a correct state. In both cases nonces will be used to ensure
freshness.

Story-XI: As the TAF I want to self-issue a
valid trust opinion VC based on the relevant
trust sources.
Story-XII: As the MD I want to self-issue
a valid misbehaviour report VC for the data
that is been sent.

Upon reception of the trustworthiness evidence, as trust sources
to the TAF (in the context of CONNECT ’s envisioned use cases,
such evidence stem from the MD Service as well as the de-
ployed attestation security controls), TAF should be able to con-
struct a Verifiable Credential encoding the calculated trust opin-
ion and Actual Trust Level (ATL for the target CCAM function)
bound to conformance proofs that the TAF itself is at a cor-
rect state. This is achieved by equipping all CONNECT se-
curity components with policy-restricted attestation keys (Sec-
tion 5.4.2.2) predicating their use for signing on the configuration
correctness of the host application (i.e., TAF).

Story-X: As the TCH I want to self-issue a
valid VC for attestation evidence from the
vehicle’s devices.

Sections 5.5 and 5.6 describe how the trustworthiness claims
will be generated and anonymously signed. As described in
Section 5.1, one of the core goals of CONNECT is to enable
the node- and data-centric trust quantification (across the entire
CCAM continuum) in a secure/verifiable and privacy-preserving
manner. This entails the exchange of trustworthiness evidence
(of a vehicle) in a manner that allows the characterisation of
its trust state but without revealing any specific identity, config-
uration and/or implementation properties of the attested vehi-
cle [16], so as to not increase an attacker’s capabilities to track
or exploit the operational profile of the vehicle.

Story-VIII: Trusting Verifiable Presentations.
Story-XIII: Verify a trustworthiness claims
VP provided in a CAM//CPM message.

The Verifiable Presentations are anonymised through the con-
struction of threshold signatures (Section 5.6.1.2), and consti-
tute the trust-related evidence collected in scope of a trust as-
sessment process [11]. Once compiled by the TCH component,
they are ready to be shared with external entities as evidence
on the trust level of the entire vehicle, hiding any sensitive at-
testation attributes on the internal vehicle components, so as to
avoid vehicle fingerprinting and other privacy breaches.

CONNECT D4.2 PU – Public Page 60

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

These anonymised trustworthiness claims, upon reception,
should be verified on both their authenticity and integrity (“been
constructed from vehicles that are equipped with a valid CON-
NECT TCB”) but also on the associated proofs of possession
(Section 5.6.1.3); i.e., transmitting vehicle should have access to
the original credentials, as issued by the AIV, MD Service, and
TAF, holding the non-disclosed attestation attributes for each
verified vehicle component.

Table 5.1: CONNECT Protocols & Crypto Primitives used to support the User Stories
given in Chapter 4.

These enhancements can be divided into: i) those for on-boarding the ECUs (Sections 5.3.1
and 5.3.2) and ii) those for attesting to the state of the ECUs during runtime; thus, ensuring
that these attestation results (Section 5.4) are correctly signed before they are sent outside of
the vehicle (Sections 5.5). The on-boarding protocols are reasonably straightforward, while those
for confirming and signing the attestation results are more innovative and therefore described in
some detail. Protocols that are standardised, e.g. setting up a TLS connection, are omitted for
simplicity of the protocol descriptions.

This set of protocols constitutes the first version of CONNECT ’s TCB for enabling the overar-
ching federated trust assessment mechanism (as described in D3.2 [15]) to maintain a
continuous up-to-date view of the trust state of each node across the CCAM continuum.
The provided trust extensions enact the functional specifications detailed in Chapter 4, in the
form of user stories - focusing not only on node-centric trust but also data-centric trust capturing
varying security and privacy requirements as posed by the target CCAM function. The detailed
mapping can be seen in Table 5.1.

We have to highlight, that as mentioned in Chapter 2, these mechanisms currently focus on
enabling the trust assessment process of a vehicle (node-centric trust) and its internal sensors
and components monitoring kinematic data (data-centric trust). Essentially, they allow the secure
and verifiable measuring and reporting of the correct configuration and behavioural state of all
(in-vehicle) sensors and ECUs processing data as part of a function, thus, establishing a chain of
trust for the entire vehicle anchored to the secure elements (TEEs) instantiated to those capable
devices. This set of trust extensions will also provide the baseline for the trust assessment of
the MEC infrastructure to be documented in D4.3 [18]: this does not only include infrastructural
elements but also the CCAM services being instantiated on them including both the control-
and network-plane of the service life-cycle management and orchestration layer. The internal
crypto abstractions of all schemes are agnostic to the environment where they are instantiated.
The core enrichment would revolve around the extensions of the TEE Device Interfaces to also
monitor those MEC-specific characteristics based on which the overall Level of Assurance of the
edge infrastructure can be quantified (based on the classification detailed in Section 2.1.)

5.1 Determinants Behind CONNECT Crypto Agility

Critical to the design of CONNECT trust assessment protocols and attestation mechanisms is
the selection of the appropriate type of crypto primitives that satisfy the envisioned security and
privacy requirements for the sharing of trustworthiness evidence, as “trustworthiness claims”.
Based on this, the trust state of an entity or data item will be calculated. As described in D3.1 [9]

CONNECT D4.2 PU – Public Page 61

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

(and further elaborated in D3.2 [15]), CONNECT supports three variants of the Trust Assess-
ment Framework (TAF): (i) Standalone TAF for creating a local view on the trust level of either
the host entity (vehicle or MEC) or a remote entity but solely relying on its own perception of
its environment (build from locally extracted data and CAM/CPM messages received from neigh-
bouring nodes); (ii) Federated TAF that enacts upon the joint calculation of a trust score of a (SW
and/or HW) component between two or more TAFs. This trust quantification elevation relies on
the secure collaboration of distinct TAFs (residing on the vehicle and MEC or the vehicle’s digital
twin) exchanging trust sources, as part of their linked trust models, towards the calculation and
maintenance of trust reports for a wide set of nodes and data items; and (iii) Digital Twin for
Trust Assessment which is an instantiation of the federated TAF mode of operation, enabling
a vehicle to avail from the availability of the MEC in order to outsource its trust model and TAF
state to its DT where reasoning on the trust sources can be executed on behalf of the original
TAF agent residing in the vehicle.

In all cases, trust in data or entities is based on the sharing of trustworthiness evidence (char-
acterised as trust sources) that capture the behavioural profile of the target node/component to
be assessed. Such evidence might originate from any security control that has been deployed
to the node - albeit, in CONNECT we rely on the attestation attributes to be produced by the
integrity verification capabilities, offered by the underlying Trusted Computing Base (TCB),
as well as the detection of any misbehaviour (encoded in misbehaviour reports) based on
the plausability checks conducted by the employed Misbehaviour Detection (MD) framework [12].
Due to their nature, such trust sources contain sensitive information on the configuration and exe-
cution profile of the target node which renders existing verification and trust assessment schemes
prone to privacy breaches and implementation disclosure attacks under “honest-but-curious”
adversaries [20]. For instance, attestation mechanisms usually rely on a trusted verifier to main-
tain reference material, such as the target device’s execution graph or configuration hash of its
whitelist of installed binaries, and other acceptance criteria to decide on the legality of the attested
node’s properties, as recorded and reported by the proving node trust anchor. In CONNECT the
role of the verifier is undertaken by the Attestation and Integrity Verification (AIV) component,
as detailed in Section 2.1, which is responsible for governing the attestation process with the
required in-vehicle components based on the Trust Assessment Request (TAR) initiated by the
TAF. It monitors any changes in the trust level of a component (depicted through the continuously
reported attestation attributes) and forwards the attestation report (with the associated evidence)
to the TAF for the calculation of the Actual Trustworthiness Level (ATL). In the same context, the
MD service (deployed as part of a vehicle’s internal security policy management) has access to
all extracted kinematic data and the originating in-vehicle sensors so as to reason on any signs
of malicious or otherwise incorrect behaviour in order to inform the TAF.

One important guiding factor in the design of any trust assessment protocol (so as to also not
hinder its adoption by the automotive community and standards) is that this exchange of (sen-
sitive) attributes related to a vehicle’s trustworthiness should not create any privacy1 (or
other security-related) threats: An attacker should not gain any advantage in identifying a ve-
hicle (or linking overheard T-CAM/T-CPM message transmissions to their source) nor extracting
any aspects of the vehicle, that may compromise its privacy, including the brand of the vehicle
and its internal architecture (vehicle fingerprinting). Especially the latter may lead to breaches in
the unlinkability and untraceability of the vehicle and enable implementation disclosure attacks,

1There are no such privacy considerations for trust evidence related to the MEC virtualized infrastructure since
sharing of such attestation attributes is envisioned in the Service Level Agreement (SLA) signed by all involved
stakeholders; i.e., Mobile Network Operator (MNO), MEC tenant Application Provider, and MEC User.

CONNECT D4.2 PU – Public Page 62

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

since a malicious party may deduce information related to the internal architecture of the vehicle.
For instance, consider the envisioned C-ACC use case [12] where data collected from cameras
in a vehicle, or low-level sensors such as a LIDAR, needs to be sent to the Zonal Controllers of
the vehicle, and afterwards to the C-ACC application on the in-Vehicle Computer. However, in
addition to the information originating from the vehicle itself, the C-ACC application also requires
information originating from the roadside infrastructure, information from the Global Navigation
Satellite Service, as well as positioning and kinematic data from other vehicles. In the latter case,
a vehicle may need to send information, such as steering data and location data, to other ve-
hicles for the execution of a C-ACC service. When providing trustworthiness information, such
messages could contain detailed information regarding the correct configuration of an ECU within
a vehicle and this may lead to the inadvertent disclosure of data such as the vehicle’s brand or
internal architecture. This, in turn, can allow an adversary to identify and exploit possible vul-
nerabilities that may have been identified for systems featuring the specific characteristics (e.g.,
OS/FW version, kernel version, etc.) in order to penetrate the system. Therefore, we need to
define mechanisms that can allow the sharing of such type of (trust-related) messages but
without requiring the disclosure of sensitive information.

To remediate such privacy issues and simultaneously reduce the complexity of the verification
process of the TAF, CONNECT employs zero-knowledge proofs (as part of its Enhanced Con-
figuration Integrity Verification (CIV) scheme (Section 5.4)) for enabling the AIV to verify the trust
state of a component without the need of getting access to the (raw) monitored traces capturing
the target system’s configuration and behavioural profile. This is achieved through the provision
of local attestation capabilities (from the underlying CONNECT TCB and the Attestation Agent)
offering three core innovations. First, CONNECT TCB provides the trusted computing abstrac-
tion, called policy-restricted attestation key, that dynamically restricts a node’s attestation key
(secured in each TEE) to policies enforced by authorized entities (i.e., OEMs through the trusted
anchor of the Identity & Authentication Management (IAM) component as the secure component
managing all identity attributes of a vehicle or MEC tenant application provider). By predicating its
ability to use its attestation key for signing on its configuration correctness, we can verify a node’s
conformance using a simple challenge-response protocol that neither requires nor reveals any
configuration information. The verification can be performed (by the AIV) through simply verifying
the validity of the received signature. Secondly, CONNECT leverages Direct Anonymous Attes-
tation (DAA) (Section 5.2.4) as a platform authentication mechanism capable of offering strong
anonymity guarantees. More specifically, during the on-boarding of TEE-equipped ECUs in the
vehicle (Sections 5.3.1 and 5.3.2), a DAA Key is created as a signing attestation key, bound to
key restriction usage policies as instructed by the IAM. Such policies essentially represent the
expected configuration state of the target device so as to be deemed trustworthy. This way, the
device can only unseal its attestation key if its configuration has not changed. Thus, verifiers, who
know a node’s public key, can determine its integrity simply by requesting it to sign a challenge
using its secret key. Furthermore, the fact that DAA is based on the use of Elliptic Curve Cryptog-
raphy (ECC), built on pairing-friendly curves, allows for the signing of attestation data structures
in a secure and privacy-preserving manner, thus, reducing the knowledge that external entities
can learn about the system.

Third, to update a component’s “trusted configuration state” during runtime (e.g., due to a SW
upgrade for deploying new security patches), IAM should be able to reactively authorise new
policies binding/sealing the usage of the component’s attestation key to a new config-
uration state. However, this needs to be done in a way that can safeguard against possible
manipulation from a compromised host: As part of the attestation process, the challenge that is
sent from the AIV to all target devices will be forwarded to the Attestation Agent (running in the

CONNECT D4.2 PU – Public Page 63

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

“trusted world” of the device) through a process been instantiated in the “untrusted” (vehicle) host
that may potentially try to manipulate the parameters given to the attached trusted execution en-
vironment. This essentially considers a Dolev-Yao adversarial model, which allows an adversary
to monitor and modify all interactions between the host and the trusted component. The critical
operation to be verified is the management of the policies that are calculated outside the
TEE and that these have been correctly calculated based on the latest SW version of the
application binary to be attested. While such a policy, as aforementioned, is instructed by the
IAM, a compromised host could take a snapshot of a previously valid key restriction usage policy
(e.g., prior to a SW upgrade) and, then, try to load it again to the trusted component. This will
allow the adversary to bypass the attestation mechanism since they will be able to instruct the
AA to create a signature (leveraging the DAA Key) based on a policy that matches a previous
SW version that might be exposed to specific vulnerabilities. Hence, they will be able to rollback
the device to a previous untrusted state without this being known to any verifier (AIV) that will
assume that such attestation attributes/signatures have been created given that the correct key
restriction usage policy has been enforced. To alleviate this challenge, CONNECT is the first
of its kind to introduce the concept of Verifiable Policy Enforcement (VPE) (Section 5.4.2.2) for
safeguarding the policy management with adequate proofs on the authenticity and integrity on
any update operation that tries to alter the key restriction usage policy.

Another important factor, as outlined before, is that the data collected by the security controls
(attestation enablers, misbehaviour detection), and used as trustworthiness evidence does not
reveal any type of information that may have adverse effects on the privacy of the vehicle and/or
user. One of the most predominant threats in this regard is vehicle fingerprinting, which refers
to the identification of aspects of the vehicle that may compromise the underlying privacy re-
quirements, and to enable a malicious party to perform implementation disclosure attacks. To
compound this issue, it is important to leverage appropriate signature schemes that can
anonymise the trustworthiness claims (constructed by the Trustworthiness Claims Handler
(TCH) and encoded as Verifiable Credentials [11]) so as to protect against any linking opera-
tions that can be done by an external entity (when such claims are sent outside the vehicle - to
either neighbouring vehicles or the MEC). This feature, in combination with the need to assume
near-zero trust assumptions for the vehicle, requires additional validation of all those compo-
nents that act as trust sources (including attestation enablers, misbehaviour detection and the
TAF itself) and provides all necessary trust-related information based on which an up-to-date
view of the trust state of all components across the CCAM continuum can be maintained.

The critical operations to verify are the authenticity and integrity of all computing elements that
participate in the trust assessment process: from the AIV and MD that provide trust sources to
the TAF, including also the in-vehicle sensors and components that are part of a function chain to
be attested (as part of a trust model), to the TAF itself that needs to prove its integrity when pro-
viding a trust opinion on a trust property of interest for a node- or data-item. There is no inherent
trust bootstrapped to any of these components, hence, it is also necessary to provide evidence
about the correctness of the CONNECT security elements themselves so that an external verifier
can have the necessary guarantees that the information reported is trustworthy. This comes as
an additional layer of safeguarding the CONNECT trust assessment process by employing trust
abstractions that can protect the construction of trustworthiness claims (through associated sig-
natures) if and only if the majority of the participating components are deemed trustworthy. In
other words, a valid signature can be associated to a TC if and only if at least k out of l entities
correctly execute the overarching trust assessment protocol. All the above, led to the design of
a new protocol towards the bootstrapping of vertical trust to all CONNECT security related com-
ponents, leveraging strong crypto primitives including threshold signatures and DAA capabilities.

CONNECT D4.2 PU – Public Page 64

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

In what follows, we elaborate on all the crypto building blocks leveraged as part of CONNECT ’s
crypto agility layer for achieving the aforementioned security and privacy requirements through
the entire life-cycle of a vehicle.

5.2 CONNECT Crypto Primitives & Building Blocks

5.2.1 Shamir Secret Sharing

Secret sharing refers to methods allowing the secure distribution of a secret among l entities,
such that the secret can be retrieved only if a predefined threshold number of group members t
coordinate and correctly execute the protocol. Shamir secret sharing realises that functionality by
utilising degree t random polynomials and Lagrange coefficients to retrieve the constant factor of
those polynomials.

More specifically, let s be the original secret to be shared among n entities, {Ei}i∈[n]. Let D be
the dealer which will perform the secret sharing operation, and distribute the share si to each Ei,
for i ∈ [n].

First, D will generate a random polynomial P of degree t (where t the threshold of the scheme),
for which it holds that P (0) = s. They will then set si = P (i), and share each si with the entity
Ei. The original secret s can then be reconstructed from the shares of m ≥ t entities {si}i∈[m],
by summing them up (times a coefficient), i.e., it holds that;

s =
∑
i∈[m]

li ∗ si

where li the Lagrange coefficient for the set [m], calculated at 0, i.e., li =
∏

j∈[m],j ̸=i
j

(j−i)
.

Shamir’s secret sharing technique can be used to distribute a single signing key to multiple par-
ticipants, such that, only a threshold number of participants can use it. In CONNECT, the DAA
Issuer will sample a random secret key for calculating Schnorr signatures, and use Shamir secret
sharing to divide it into shares for the vehicle’s A-ECUs. Each A-ECU will use that share to par-
ticipate in our enhanced DAA scheme, by executing a threshold signature protocol (see Section
5.2.2).

5.2.2 Threshold Signatures

In a k out of l threshold digital signature scheme, valid signatures can be generated only if at least
k out of l entities (also called the Signers) participate and correctly execute the protocol. More
precisely, in a threshold signature protocol considering a set of signers {Si}i∈[l], a secret/public
key pair (sk, PK) will be generated, either by a trusted third party authority, or in a distributed
manner among the Si. The PK will be made public, while the secret key will be ”divided” into
shares, and stored by each Si (in the case where key generation is curried out by a trusted
third party, this for example can be done with Shamir’s secret sharing technique, as described in
Section 5.2.1). During signing, each Si will use their secret key share, to generate a signature
share, which will later be included in the calculation of a signature, valid under the group public
key PK. Security of such schemes dictates that it will not be possible for any subset of Signers

CONNECT D4.2 PU – Public Page 65

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

{Sj}j∈J , where J ⊆ [l], with |J | < t, to coordinate and calculate a valid signature under the group
public key PK.

Threshold signatures are used in our enhanced DAA scheme, to showcase that at least a thresh-
old number of protocol participants have correctly executed the protocol. In CONNECT, we will
use this to sign trustworthiness claims, while at the same time showcasing that a number of A-
ECUs greater than a threshold value (defined by the DAA Issuer) is in a correct state, which will
allow them to participate in the threshold signature protocol.

5.2.3 Flexible Round-Optimised Schnorr Threshold Signatures (FROST)

In this Section we will give a quick overview of FROST [28] [8], a Flexible Round-Optimised
Schnorr Threshold signature scheme. There are 3 types of entities participating in the execution
of the FROST protocol, a set of n ≥ 1 Signers {Si}i∈[n], a Signature Aggregator SA and a Trusted
Dealer TD. At the start of the protocol, each Si will receive a secret key share ski from the TD,
which will later use to contribute a signature share σi. The SA will then gather and combine each
σi to the final Schnorr signature σ.

Frost comprises of two main stages; a key generation and distribution phase and the signature
generation protocol. During key generation, the TD will compute a secret key sk and its corre-
sponding public key Y = gsk. Then, using Shamir’s secret sharing technique, they will derive n
shares ski of sk, with a threshold t (meaning that with any m ≥ t secret key shares ski, one could
re-compute the original secret key sk). Note that the secret share ski are ”additive”. To see why,
consider how TD uses Shamir secret sharing. First, the TD will generate a random polynomial
P of degree t (where t the threshold of the scheme), for which it holds that P (0) = sk. They
will then set ski = P (i). The original secret sk can then be reconstructed from m ≥ t different
{ski}i∈[m], by summing them up (times a coefficient), i.e., it holds that;

sk =
∑
i∈[m]

li ∗ ski

where li the Langrange coefficient for the set [m], calculated at 0 (i.e., li =
∏

j∈[m],j ̸=i
j

(j−i)
). This

property will translate to the signatures shares σi, provided by each participant, meaning that
generating the final signature σ, will only require adding the received signature shares together.

The signature generation protocol in FROST compromises by 2 single round phases; a pre-
processing stage and a sign step. The SA will initiate the protocol by choosing a set S =
{i1, ..., im} of Signers {Si}i∈S to participate in the execution of the scheme.

Pre-processing Phase: During the prepossessing stage, each signer Si, i ∈ S, will commit to 2
nonces; a blinding nonce di and a binding nonce ei. The blinding nonce serves as the contribution
of Si to the Schnorr signature nonce, while the binding nonce is used to avoid attacks caused by
combining protocol runs over different messages or set of Signers [23]. More specifically, the
binding nonce di will be used to ”bind” each Signer’s responses, to the message to be signed and
the set of Signer’s participating in a specific run of the FROST protocol (see bellow). To complete
the prepossessing step, each Signer Si will return the commitments (Di = gdi , Ei = gei) to the
SA.

Sign Phase: To start the sign step, the SA will gather all commitments (Di, Ei) from each Si,
i ∈ S. They will then sent (m,B), for B = {(Di, Ei)}i∈S to each signer Si. After receiving
(m,B), each Signer will verify m (i.e., that it is a message they are willing to sign), and also

CONNECT D4.2 PU – Public Page 66

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

check that Di, Ei ∈ G1, ∀(Di, Ei) ∈ B. If successful, each Si will then compute a binding value
for each of the other Signers participating to the protocol; pi = H(i,m,B), i ∈ S, where H a
hash function. Finally, each Si in S will compute the group commitment R =

∏
i∈S DiE

pi
i , the

challenge c = H(R, Y,m), and their signature share σi = di + (ei ∗ pi) + li ∗ si ∗ c. Note that the
group commitment R and the challenge c will be components of the final Schnorr signature on m.

Each Si will return their signature share σi to the SA. After receiving all signature shares, the SA
will perform the following steps;

• For each Si, i ∈ S, calculate its binding value pi = H(i,m,B), its contribution to the group
commitment Ri = DiE

pi
i , as well as the group commitment it self R =

∏
i∈S Ri.

• The SA will then check if gσi = RiY
c∗li
i , i ∈ S to validate the signature share of each Signer.

• If successful, the SA will aggregate the shares σi of each Si to get σ =
∑

i∈S σi. The tuple
z = (R, σ) is the final signature output of the protocol. If executed correctly, z will be a valid
Schnorr signature on m.

For completeness, we will outline here the proof of correctness of FROST. For simplicity, lets
assume that every Signer executes the protocol correctly. If they are not, either they will be
”caught” by the SA, in which case the protocol will be aborted, or the final signature z will be
invalid. Note that if we set ki = di + ei ∗ pi, then R =

∏
i∈S g

ki and σi = ki + c ∗ li ∗ si, where
each ki a random scalar. Setting then k =

∑
i∈S ki, we have that R = gk and σ =

∑
i∈S σi =

k+c (
∑

i∈S li∗ski). Using the fact that the secret key shares are additive, we get that σ = k+c∗sk,
meaning that z = (R, σ) is a valid Schnorr signature on m, for the public key Y = gsk.

FROST will become the basis on top of which we will build our enhanced DAA scheme. At a high
level, our scheme is based on anonymising the public key Y which verifies the signature returned
from FROST. Note that, our scheme is threshold Schnorr signature agnostic. That said, FROST
provides desirable advantages in performance, robustness and maturity.

5.2.4 Direct Anonymous Attestation (DAA)

Direct Anonymous Attestation (DAA) is a platform authentication mechanism that enables the
provision of privacy-preserving and accountable services. DAA is based on group signatures
that allow remote attestation of a device associated to a Trusted Environment (TE), while offering
strong anonymity guarantees. In general Direct Anonymous Attestation (DAA) consists of a DAA
Issuer, a set of Signers and a set of Verifiers. The DAA Issuer acts as a Trusted Third Party
(TTP) and creates the DAA membership credential for each signer that wishes to participate in
the DAA scheme. A DAA credential corresponds to a signature of the signer’s identity produced
by the DAA Issuer. A DAA Signer is usually consisted by a (HOST, Trusted Environment) pair,
in CONNECT each DAA Signer will be consisted of the (HOST, Gramine) pair. Acquiring a DAA
credential, indicates a membership credential to the DAA community and a trustworthy validation
of the Signer. In other words, by providing a DAA signature, a Verifier can attest to the correct
state of the signer by ratifying the validity of this signature construction. This allows for the
provision of local attestation capabilities where attestation and verification mechanisms can be
done in a zero-knowledge manner; without the need for the Prover to disclose any details on
the configuration and implementation status of the device. Moreover, the DAA signature includes
a zero-knowledge Proof-of-Knowledge, which is a cryptographic construct used to convince

CONNECT D4.2 PU – Public Page 67

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

the Verifier that the signer possesses a valid DAA membership credential, without revealing any
other information about the identity of the Signer. More concretely, the DAA provides the Signer
with the ability to create signatures in an anonymous way, whilst still convincing the Verifier that it
possesses valid DAA credential. Furthermore, the Direct Anonymous Attestation (DAA) is known
to have the following properties:

• User-Controlled-Linkability: Two DAA signatures, created by the same signer, may or
may not be linked from a Verifier’s point of view. The linkability of DAA signatures is con-
trolled by an input parameter called the basename (i.e., bsn). If a signer uses the same bsn
in two signatures, they are linked; otherwise, they are not.

• Unforgeability: When the DAA Issuer and the HOST’s Trusted Environment, (i.e., in CON-
NECT the Trusted Environment is Gramine), are honest no adversary can create a sig-
nature on a message µ with respect to the bsn when no Gramine enclave signed µ with
respect to the bsn.

• One-More-Unforgeability: When the DAA Issuer is honest, an adversary can only sign
in the name of compromised Gramine enclaves. More precisely, if n Gramine enclaves
are compromised, the adversary can create at most n unlinkable signatures for the same
base-name (i.e., bsn).

• Anonymity: An adversary that is given two signatures, with respect to two different base-
names (i.e., bsn), cannot distinguish whether both signatures were created by one honest
device, or whether two different honest devices created the signatures.

• Non-frameability: No adversary can create signatures on a message µ with respect to
base-name (i.e., bsn) that links to a signature created by an honest device for the same
bsn, when this honest device never signed µ with respect to bsn.

5.3 Preparing the Vehicle for the CCAM Continuum

The user stories described in Section 4.2 outline what needs to be done to prepare the vehicle
for the execution of the CCAM functions and supply the data needed to support them. In a
CONNECT vehicle, these functions are enhanced by the focus on trust: i) Are the systems setup
correctly? ii) Are the different software components behaving as they should? iii) What is the level
of trust that should be placed on data stemming from another vehicle? To provide an answer to
these questions, along with many others, we must ensure that the vehicle is setup correctly; thus,
we should verify that systems are operating as expected and ensure that communication between
the different parts of the system is monitored and verified at all stages (this is the task of the
TEE-GSE). Once this is completed, we leverage the TAF and MBD to provide extra assurances,
combining the internal data it receives (i.e., measurements, configuration integrity verification
and attestation results) together with the data from the CAM/CPM messages received from other
vehicles in the vicinity and the DENM messages received from the MEC.

The TEE-GSE , TAF and MBD are all executed within containers deployed on the the vehicle
computer, as described in D4.1 [10]. The setup and configuration of the aforementioned compo-
nents within the containers is described in Section 3.2.3. Part of this setup is the provision of the
necessary keys for ensuring the integrity and provenance of data in the system.

CONNECT D4.2 PU – Public Page 68

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

S-ECUHSM

Initialisation

Flash S/N and onto the device

OEM

Generate
and application keys

Encrypt and
application keys with

Host

Generate

Device
manufacturer

Generate S/N and

Store S/N and

Use S/N to retrieve

Decrypt with
S/N and

S/N and

Decrypt with
 and store

Send S/N and to the OEM in a verifiable credential using a secure channel

Tier 1

Install basic software

Encrypt ECU software
with Flash Provide

Decrypt and install

Prepare for
integration

Send S/N and Send S/N and

Send

Provide

Encrypt S/N and
with

Send

using a secure and
authenticated channel

Figure 5.1: Initialisation and Preparation for Integration for an S-ECU.

The rest of the system components (i.e., ECUs, including A-ECU and S-ECU), also need to
be on-boarded. By utilising the term on-boarding, we refer to the setup of the correct software
and keys needed. The protocols supporting the secure on-boarding depend on the type of ECU;
hence an S-ECU, may solely support symmetric cryptography, while an A-ECU can further sup-
port asymmetric cryptography. The Zonal controller (ZC) are A-ECU which in addition to other
functions they provide, act as gateways between the different vehicle communication buses. It is
these protocols that are illustrated by user stories: Story-I and Story-V.

The next two Sections describe the on-boarding processes, but before describing them we note
that the industry identifies the following entities involved in production and integration of ECUs
into a vehicle:

OEM: The vehicle manufacturer. When they receive the ECU they also receive the ECU’s serial
number and associated key data (the key for an S-ECU and the key and corresponding
certificate for an A-ECU).

Tier 1: This is the entity that prepares the ECU for integration into the vehicle, installing basic
software used to configure the ECU, setting up the keys and finally installing OEM specific
software onto the ECU.

CONNECT D4.2 PU – Public Page 69

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

HSM OEMS-ECU

Integration

VEHICLE
IAM

Verify HMAC

Vehicle IAM has a
master key,

Generate
application keys

Encrypt the application
keys with

S/N, HMAC(,S/N) S/NS/N, HMAC(,S/N)

Encrypt and
with CTCT, HMAC(,CT)

Decrypt CT with

using a secure and
authenticated channel

Decrypt with
 and store

CT, HMAC(,CT)

Verify HMAC

, HMAC(), HMAC()

Verify HMAC

Figure 5.2: Integration into the vehicle for an S-ECU.

Tier 2: This entity is the ECU manufacturer. They initialise the ECU with a serial number and
identity key. These are later provided to the OEM when they receive the ECU.

Notes:

1. Tier 1 and the OEM will often be the same entity.

2. The Tier 1 processes are carried out before the ECU is installed into the vehicle. Either
when the vehicle is being manufactured, or when an ECU is being replaced at an OEM’s
service facility.

3. The Zonal controller (ZC) are integrated in the same way as the A-ECU.

4. Once the on-boarding protocols are executed the CONNECT attestation functions and key
restriction policies that will be used are installed. This extra integration stage is described
in Section 5.4.

All ECUs will use pre-shared keys to protect the integrity of the data communicated between
them, the Zonal controller (ZC) and the different components in the vehicle computer.

Where data needs to be kept confidential, or access to the data needs to be controlled then it will
be encrypted. In this case, the particular mechanisms used will depend on whether the ECU can
do asymmetric cryptography, or not (A-ECU compared to S-ECU).

CONNECT D4.2 PU – Public Page 70

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

OEM

Encrypt and
the certificates with

Host

Flash S/N, and
onto the device

Device
manufacturer

Generate S/N, key
pair and certificate.

Verify the signature
using

Create the key
certificates using
the CSRs

Initialisation

Tier 1

Install basic software and

Send S/N and signed
CSRs to OEM

Use S/N to retrieve

Use 's public key
to generate and its

encapsualtion

Send and

Store certiificates

Encrypt ECU software
with and sign

with OEM signing key
Flash

Verify OEM signature,
decrypt and install

Create a software
encryption key,

Decrypt with
 and certs

 onto the device

Provide

Generate application
key pairs and CSRs

Sign CSRs with the
 private key

Send S/N and signed
CSRs to OEM

Send S/N and signed
CSRs to OEM

Send and

Send and

Provide

using a secure and
authenticated channel

Sign with the
OEM signing key

Verify the signature
using

A-ECUTEE Guard

Unpack

Generate
key pair and CSR

Prepare for
integration

Figure 5.3: Initialisation and Preparation for Integration for an A-ECU.

5.3.1 Protocols for On-boarding the S-ECU

In Figure 5.1 the protocols used to initialise an S-ECU and prepare it for integration into the vehi-
cle are illustrated. These stages are carried out by the device manufacturer and the Tier 1 entity
before an S-ECU is installed into the vehicle. In the initialisation stage the device manufacturer
flashes a serial number (S/N) and the device’s identity key (KµC) onto the device as it is manu-
factured. This information is retained and later provided to the OEM so that it can be used when
preparing the device for integration into the vehicle.

The Tier 1 entity prepares the device for integration into the vehicle, this will be done with a direct
connection to the ECU and so the signals are not protected as they would be if the device was
communicating on a network. However, communication between the Tier 1 entity and the OEM
will be protected for authentication and security (for clarity, this is not detailed on the diagram).

CONNECT D4.2 PU – Public Page 71

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Table 5.2: S-ECU keys and their use.

KµC The ECU identification key, flashed onto the device as it is manufactured, used
to enable the OEM to receive the ECU key.

KECU The ECU key, used when preparing the device for integration into the vehicle.

KSW The OEM software key, used when installing software onto the device.

KI The key used when integrating the device into the vehicle.

KPSK A pre-shared encryption key used, when required, to protect sensitive data.

KEV The key used to protect the integrity of data passed between the ECU and the
vehicle’s main computer.

The first stage of the preparation is to install the basic software that will be used in this preparation
process. Once this is done, the device’s HSM generates the KECU key, encrypts this and the
device’s serial number using KµC and sends this together with the serial number in plain text to
the OEM. The OEM uses the serial number to retrieve KµC which it uses to decrypt the message
and obtain the serial number and KECU . Once the serial numbers are checked KECU can be
used to encrypt and send data back to the ECU.

The OEM generates a key to be used when installing the software, KSW , and the integration key,
KI . Depending on how the ECU is to be used it may also generate some application keys, even at
this early stage. These keys are all encrypted with KECU and sent to the HSM which can decrypt
and store the keys securely. The final stage of the preparation phase is to install the software on
the ECU, to do this the OEM encypts the software using KSW and sends it via Tier 1 to the ECU
where it is decrypted and installed. Note that which application keys are necessary and when
they are installed on the ECU will depend upon how the ECU is to be used in the vehicle.

Once the ECU is prepared for integration it can be installed in the vehicle and the protocols used
to do this are given in Figure 5.2. The ECU integration is managed by the IAM, it starts with the
ECU sending its serial number, protected with an HMAC using the integration key, KI , to the IAM.
The IAM uses the serial number to retrieve KI (this may have been stored, or is re-generated as
required). The OEM can the check the HMAC and, provided the check proceeds, can then go
on to generate keys that it will use to protect communication with the ECU. These are KPSK a
pre-shared key that it will use for protecting data that it exchanges with the ECU and KEV a key
that is used to protect the integrity of communications between the ECU and the vehicle’s main
computer.

These keys are encrypted using KI and sent to the ECU’s HSM protected again using an KI in
an HMAC. The HSM verifies the HMAC and then decrypts and stores these keys. From now on
KEV will be used to protect communications with the IAM (and other components in the vehicle
computer). The final integration stage is to generate the necessary application keys, encrypt them
using KPSK and send them to the ECU, where the HSM can decrypt and store them. Table 5.2
shows the keys that have been defined.

5.3.2 Protocols for On-boarding the A-ECUs

On-boarding the A-ECUs (which includes the Zonal Controllers) follows the same pattern with
initialisation carried out by the device manufacturer, preparation for integration by the Tier 1 sup-
plier and then integration into the vehicle by the OEM. The protocols are shown in Figures 5.3

CONNECT D4.2 PU – Public Page 72

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

A-ECUTEE Guard Host

Integration

VEHICLE
IAM

The IAM has a
master key,

S/N,

Generate
application keys

Encrypt the application
keys with

Generate attestation
signing keysInstall and setup key restriction policies (see separate figure)

(S/N,

sign

(

sign

Verify signature Verify signature

S/N,

S/N,S/N,

Decrypt with
 and store

, HMAC()

Verify HMAC

, HMAC()

Figure 5.4: Integration into the vehicle for an A-ECU.

and 5.4. The significant difference is how the keys are generated and handled, the A-ECUs can
use asymmetric cryptography, although pre-shared symmetric keys are also used for protecting
the integrity of messages and for encryption. For the asymmetric keys installed on the ECU the
OEM acts as the signing authority.

Referring to Figure 5.3, initialisation in this case consists of the provision of a serial number.
S/N, an asymmetric key, KµC , and its associated certificate, CµC . The OEM can later use the
serial number to retrieve the certificate. In preparing for integration, the Tier 1 supplier starts by
installing the basic software need to carry out this process. The next stage is to generate KECU

and any application keys needed and their certificate signing requests (CSRs).

The CSRs are signed with KµC and sent together with the device’s serial number to the OEM.
The OEM retrieves CµC from the device manufacturer and uses it to verify the signature on the
CSRs. Once verified, it creates the key certificates, it also creates a software encryption key,
KSW that ii will share with the device. In order to send the key certificates and KSW to the device
it uses a key encapsulation method to generate an encryption key, Ke and its encapsulation, kem,
from the public key for KECU . Ke is used to encrypt KSW and the key certificates, this encrypted
data is then signed and sent to the device. Provided the signature validates correctly the kem is

CONNECT D4.2 PU – Public Page 73

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Table 5.3: A-ECU keys and their use.

KµC The ECU identification key, flashed onto the device (with its certificate) as it is
manufactured, used to enable the OEM to receive the ECU key.

KECU The ECU key, an asymmetric key used when preparing the device for integra-
tion into the vehicle.

KSW The OEM software encryption key, used when installing software onto the
device.

KPSK A pre-shared encryption key used, when required, to protect sensitive data.

KEV The symmetric key used to protect the integrity of data passed between the
ECU and the vehicle’s main computer.

unpacked, the Ke retrieved and the data decrypted. The key, KSW is stored in the TEE Guard
and the certificates provided to the host. As for the S-ECU, the last part of this preparation phase
is the provision of the ECU software.

Integrating the A-ECU into the vehicle proceeds without the involvement of the OEM, it starts with
an exchange of nonces between the TEE Guard and the vehicle’s IAM. Each side then signs the
nonces and sends then back to the other party (the ECU also identifies itself, by including its
serial number in its message). Once the signatures are verified the nonces are used to generate
the pre-shared encryption key, KPSK and the key for protecting the integrity of communications
between the ECU and the vehicle, KEV . Given the nonces, each party can generate the keys
themselves using a KDF, the nonces and any other pre-agreed data. Keys for different purposes
use different domain separators (DS) in the KDF. To complete the process the application keys
are generated by the IAM, encrypted using KPSK and sent to the ECU, message integrity is now
protected using an HMAC with KEV . On receipt the TEE Guard verifies the HMAC and decrypts
and stores the keys. Table 5.3 shows the keys that have been defined.

5.4 CONNECT Configuration Integrity Verification as a Trust
Assessment Source

CONNECT plans on employing several attestation mechanisms so as to provide Trust Sources
(TS) to the TAF , enabling the assessment of the integrity trust property (i.e., details on the trust
properties of CONNECT are available in D3.1 [9]). Such an attestation mechanism is the Con-
figuration Integrity Verification (CIV), used to ensure the correctness of the configuration of
any device that is participating in the service graph chain. The algorithm that is executed for the
CIV varies, depending on the capabilities of each device and the cryptographic primitives that it
can support. The S-ECU for example, cannot provide verifiable evidence, contrary to the TEE
capable devices that can support asymmetric cryptography and are capable as such, of providing
verifiable evidence.

To this end, we are presenting a novel CIV attestation scheme, for all the TEE capable devices,
based on the notion of Attestation by Proof. More specifically, we are introducing a challenge-
based protocol, where a Verifier challenges the Prover with a fresh nonce; if the Prover is able to
handle the Verifier’s challenge (i.e., which means that it is capable of producing a valid signature
with its Attestation Key), then the Verifier knows that the Prover is in a correct configuration state.

CONNECT D4.2 PU – Public Page 74

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

By creating a valid signature, the Prover provides Trustworthiness Evidence in a Zero Knowledge
manner, as he is not disclosing the actual trace. This is achieved by integrating the creation of
Attestation Keys as part of the Secure On-Boarding, where the IAM sets the Key Restriction
Usage Policies to be enforced by the Local Attestation Mechanisms, for each newly installed
ECU.

Therefore, in the remainder of this section, we present the finalised design of CONNECT en-
hanced CIV attestation scheme, which is capable of constructing the appropriate Key Restriction
Usage Policies for separating the local and the global Attestation Keys.

In this context, the CONNECT CIV scheme aims to alleviate the Trustworthiness requirements of
the TAF , AIV , TCH that act as Verifiers as we consider that the CONNECT operates in a Zero
Trust manner. To this end, any Verifier is capable to attest the desired device/component, while
simultaneously we consider that it should be difficult for the Verifier to infer any meaningful infor-
mation regarding the Configuration/State of the attested device/component. It has to be noted
here that CONNECT CIV scheme provides the Trustworthiness Evidence for both CONNECT
architectures In-Vehicle and MEC, where for each architecture they are provided different types
of Trustworthiness Evidence, as described in Chapter 2.

As aforementioned, the CONNECT enhanced CIV scheme which will be thoroughly described
in the following Section concerns the zero-knowledge variant of CONNECT attestation capa-
bilities and is based on the definition of a Policy-Restricted Attestation Key that is considered
as the trust anchor of the attestation process. This enables enhanced authorisation mechanisms
to the Prover’s Attestation Key if and only if the respective protection policies, that are deployed
as part of the underlying Root of Trust (i.e., in this case Gramine and Intel SGX), are satisfied.
In CONNECT , the key restriction usage policies are dictated by the OEM and are enforced by
the IAM component, acting as a Trusted entity that governs the overarching process of the pro-
posed Vehicle and MEC architectures, thus ensuring that the Prover can only use the key to sign
challenges if its configuration satisfies the predefined policy. By predicating its ability to sign “Re-
quests for Evidence” (triggered by the TAF upon request by the CCAM service of interest) based
on its configuration correctness (i.e., regarding both the configuration of the hosted application
and the configuration of the enclave for handling the Attestation mechanisms), the conformance
of the Prover can be verified using a simple challenge-response protocol that neither requires,
nor reveals any configuration information to the Verifier.

Moreover, as we described in Section 4.7 (and more specifically Story-XXII and Story-XXIII), we
need to support not only Software Updates, to resolve bug issues or to introduce new features,
for the applications running within the TEE, but also to off-load security critical applications that
are protected by a TEE. More specifically, such an action leads to a change of the configuration
of the TEE. As a result, the previously issued Key Restriction Usage Policy is no longer valid
even if no errors occurred during the software upgrade/migration. Such actions opens a wide
attacks surface, as a compromised HOST can have two different valid policies, enabling the the
creation of valid signatures even though the device now is acting maliciously. In this regard, the
CONNECT CIV is capable of creating time-limited policies, enabling the IAM to control which
policy can be satisfied at a given time.

As it was previously mentioned, CONNECT CIV scheme should be able to dynamically verify/i-
dentify that it is indeed the correct software version that is running inside a TEE enclave and
not a deprecated one that has identified vulnerabilities. In other words, CONNECT enhanced
CIV scheme scopes to eliminate any rollback or denial of update possibility that should not be
allowed, unless specified otherwise in a security policy. To the best of our knowledge, this is
a known challenge to the community which the CONNECT ’s enhanced CIV scheme comes to

CONNECT D4.2 PU – Public Page 75

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

solve. The innovation of our new design is that it enables the Prover to provide Attestation Evi-
dence regarding not only the configuration correctness but also the version of the software that
was supposed to be running, in a ZERO KNOWLEDGE manner. In order to enable a TEE capa-
ble device to meet such high security requirements, we are introducing a new component to be
part of our TCB called Verifiable Policy Enforcer (VPE) and is responsible for not only attesting
the version of the running TEE application, but in general to not allow the enforcement of Key
Restriction Usage Policies that are deemed obsolete.

Table 5.4: Notations used in the description of the CONNECT CIV scheme.

Notation Description
RootIDpriv The private part of the Device identity key.
RootIDpub The public part of the device identity key.
HWsecret The MRENCLAVE KEY, the hash digest of the CPU’s secret and the MRENCLAVE

measurement.
IAMpub The public key of the IAM.
IAMpriv The private key of the IAM.
Tracerpub The public key of the Tracer.
Tracerpriv The private key of the Tracer.
rand Random 32 bytes number.
P The policy that the Attestation Key is to be bound with.
seed The random seed under which the Attestation Key is going to be created.
AKpriv The private part of the Attestation Key.
AKHASH The hash digest of the private part of the Attestation Key.
AKpub The public part of the Attestation Key.
AKname The name of the Attestation Key, aka the hash digest of the public part of the Attestation

Key.
V PEpriv The private part of the VPE Key.
V PEpub The public part of the VPE Key.
V PEENC The Encrypted private part of the VPE KEY.
V PEHASH The hash digest of the private part of the VPE Key.
Pauthorized The approved runtime configuration hash digest of the Attestation Agent.
Ticket A signature over the Pauthorized provided by the IAM.
MRAA The enclave measurement of the Attestation Agent.
MRTracer The enclave measurement of the Tracer.
Secret1 The secret that is targeted to be sent to the VPE.
Secret1ENC The encrypted Secret1.
HMACkey A random HMAC Key.
Secret1MAC The Authentication digest of rand over the HMACkey.
rand1ENC The Encrypted random rand under the RootIDpub.
Secret2 The secret that is targeted to be sent to the Attestation Agent.
Secret2ENC The encrypted Secret2 under the rand.
Secret2MAC The authentication digest of rand under the HMACKEY .
rand2ENC The Encrypted random rand under the RootIDpub.
Secret1′MAC The Authentication digest of rand over the HMACkey.
Secret2′MAC The Authentication digest of rand over the HMACkey.
nonce1 A random 32 bytes number.
nonce2 A random 32 bytes number.
TraceHash The hash digest of the runtime configuration of attested applications.
σ1 The signature of a hash digest containing the nonce1 and the TraceHash over the

private key of the Tracer.
σ2 The signature of a hash digest containing the nonce2 and the MRTracer over the

private key of the Tracer.
CC The command code of specific restriction policy command.

CONNECT D4.2 PU – Public Page 76

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

σ3 The signature of a hash digest containing the nonce1 and the MRAA over the private
key of the VPE.

σ The signature of a hash digest over the private part of the Attestation key.

Throughout the remained of this Section, we will elaborate on the CONNECT enhanced CIV
scheme, and we outline how the aforementioned properties are achieved.

5.4.1 System Setup & Notation

In CONNECT as mentioned we are planning to adopt a CIV scheme for all capable ECUs (both
A-ECU and S-ECU). As the A-ECU lacks the cryptographic capabilities to provide verifiable Trust-
worthiness evidence we are not going to go into further details. Contrary to the S-ECU that pro-
vide unverifiable evidence, all the TEE capable device belonging to the in-Vehicle or the MEC
architecture needs to provide verifiable attestation/Trustworthiness/evidence proving their config-
uration correctness, while fulfilling the security requirements set by the OEM. Specifically, in order
to describe the CONNECT enhanced CIV scheme, we consider the following roles that will be
taken by the target CCAM ecosystem.

• Prover: A TEE capable device with a certified identity key by the manufacturer. In CON-
NECT we focus on Intel SGX and of course Gramine enabled devices, which is arguably
one the most mature and efficient open-source solution for developing trusted applications
in the x86, x86-64 architectures. Moreover, each Prover is equipped with three (internal)
functional components as part of their TCB.

1. The Attestation Agent: which is managing the creation and usage of the Attestation
Key of the respective device and is assumed to be running as part of the trusted world
(protected/isolated by the host Gramine TEE).

2. A Runtime (Attestation) Tracer which is responsible for monitoring and reporting
runtime measurements of the applications/functions of which the level of trust need
to be assessed. An example of such an application could be an ECU function that
is processing the received kinematic data; thus, forwards these data to the CCAM
service, which is instantiated in the in-vehicle computer. This CCAM service could
responsible for making a decision regarding whether it is safe to change lane or not
(i.e., CONNECT C-ACC Use Case). In this case, the function that is producing or
processing the data, needs to be assessed as part of the process for creating a trust
opinion on the data item itself.
We consider that the tracer is operating both in the trusted and the untrusted world
(i.e., as defined in Section 2.1). However, it has to be noted that all the security critical
functionalities are hosted within the trusted world. More specifically, the untrusted part
of the Tracer is responsible for fetching the the raw traces of the attested application,
whereas the Trusted part of the Tracer is responsible for decoding the raw traces, in or-
der to calculate the runtime configuration hash, and for executing all the cryptographic
operations that takes place within the tracer.

3. The Verifiable Policy Enforcer (VPE). We consider that the VPE is part of our TCB,
as defined in Section 2.1, which means that once the secure On-Boarding is com-
pleted successfully, we assume that it is trusted; hence it is impossible to get compro-
mised during runtime. As aforementioned, in CONNECT we need to employ security

CONNECT D4.2 PU – Public Page 77

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

mechanisms in order both to prevent software version rollbacks and denial of software
update attacks. To this end, we consider that the VPE is authorised to check during
runtime whether or not the version of the Attestation Agent, the Tracer and any other
security critical application that is running within an enclave is the expected one, as a
defence against denial of software updates. Regarding defence against software roll-
backs, CONNECT introduces a novel security mechanism, the Monotonic Counter,
that will be thoroughly described in Section 6.3.

• Verifier: As we are moving towards a Zero Trust architecture, we consider that the Verifier
is an untrusted device/component which wants to remotely check the correctness of the
Prover’s configuration. The Verifier can either be the AIV , the TAF , or even another vehicle,
hence we cannot make any Trust assumptions. In this regard, it has to be highlighted here
,that we need to employ strong cryptographic mechanisms enabling the verification of any
step of the attestation chain. We consider that the Verifier is also equipped with a Intel SGX
and Gramine in order to host trusted applications. We identify that CONNECT approach for
verifying the integrity of an ECU is quite heavy compared to the current standards, where
it is used an 8 bytes key (for the calculation of digital signatures) and each communication
channel is instantiated with CAN-buses that have very limited capabilities. Therefore, CON-
NECT is envisioned to be adopted by vehicles that are equipped with next generation CAN
buses that are capable of communicating through Ethernet, so as to not have any restriction
regarding the size of the Attestation/Trustworthiness evidence.

• IAM : In the context of CIV, the IAM is considered to be a trusted entity that:

1. Is responsible for managing the Secure On-Boarding each device to the in-Vehicle
architecture by verifying their unique certified identity key.

2. Performs the Secure On-Boarding of each device that is part of the In-Vehicle archi-
tecture as described in Section 4.3.

3. Injects a secret Key to the VPE, which is blinded with the correct configuration of the
rest of the TCB components.

4. Maintains and authorises each device’s approved configuration, as this will lead to the
definition of new key restriction usage policies.

5.4.2 Enhanced CIV - High Level Overview

Having described all the entities and components that participate in the CONNECT CIV scheme,
we will now provide a high level conceptual overview of the scheme. More specifically, the scheme
can be broken down into two distinct main phases, namely i) Join and ii) runtime Attestation.
During the Join phase, the IAM basically sets up the Key Restriction Usage Policies and creates
the VPE key, whereas in the runtime Attestation phase the attested device gets challenged by the
AIV to provide Trustworthiness/Attestation evidence.

5.4.2.1 JOIN Phase

1. Consider a newly TEE capable A-ECU that is installed on a Vehicle. First the A-ECU has
to complete successfully the secure On-Boarding protocol so as to create unique keys per
application and therefore establish a Trusted and Authenticated channel with the IAM.

CONNECT D4.2 PU – Public Page 78

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

2. Afterwards the IAM makes the necessary actions for the creation and authorisation of the
Attestation Key. The IAM fetches the reference values of the CCAM applications, in order
to compute the accepted configuration of the Attestation Agent. Apart from the reference
values of the CCAM application, for the computation of the accepted configuration are ap-
pended the reference values of the Attestation Agent Enclave (MRSigner and MREnclave
and of course a validation from the Tracer and the VPE. The expected configuration is
signed and sent back to the ECU along with the key restriction usage policy that the Attes-
tation Key needs to be bound.

3. The ECU receives the signature computed by the IAM, called Authorisation Ticket, and
creates its Attestation Key bound with the respective (issued) key restriction usage policy.
It has to be noted that this operation happens in the Attestation Agent of the ECU. Upon
creation of the Attestation Key, the Attestation Agent sends to the VPE, the Attestation Key
Name.

4. The VPE then requests from the IAM to create the VPE Key pair which is bound with a
Key Restriction Usage Policy, representing the correct configuration and the versioning of
the Tracer and the Attestation Agent. In this case, we bind the key with the Key Restriction
Usage Policy by encrypting its private part with the respective policy. The VPE key then is
injected to the challenging ECU’s VPE.

5.4.2.2 Amending with Verifiable Key Restriction Usage Policies

1. Considering that a Verifier wishes to attest (during runtime) an ECU that is part of the in-
Vehicle architecture, it will initiate an attestation challenge response protocol.

2. Upon reception of the challenges, the Attestation Agent of the Prover creates a fresh nonce
and forwards it to the VPE.

3. The VPE creates another fresh nonce. Both nonces are forwarded to the Tracer, in order
for him sign them preventing replay attacks during the attestation process.

4. The Tracer executes its Tracing algorithms in order to extract the runtime security mea-
surement of the attested application’s configuration. Upon extraction of the appropriate
measurements, the Tracer signs the extracted value bound with the nonce circulated by
Attestation Agent and signs the measurement, of the enclave environment where it has
been instantiated, bound to the nonce initially created by the VPE. Both signatures are sent
back to the VPE. By binding the two signatures the two distinct nonces by verifying the two
signatures both the VPE and Attestation Agent acquire a proof of liveliness off the Tracer.

5. The VPE then will try to gain access to his injected key by satisfying the Key Restriction
Usage Policy that was determined by the IAM. If the Key Restriction Usage Policy is satisfied
the VPE signs the accepted software version of the Attestation Agent bound with the nonce
issued from the Attestation Agent.

6. The Attestation Agent receives the two signatures, the signed value of the runtime untrusted
application and signed accepted software version, and goes off to satisfy his own key re-
striction usage policy. To satisfy the Key Restriction Usage Policy, the Attestation Agent
computes a runtime configuration from the enclave measurements and by verifying the two
signatures. Upon successful completion of the policy enforcement algorithm the Attestation
Agent signs the challenge he initially received from the Verifier.

CONNECT D4.2 PU – Public Page 79

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

5.4.3 Enhanced CIV - Architectural Details & Mode of Operation

In this Section, we provide a detailed overview containing all the details of the CONNECT en-
hanced CIV scheme, along with all the interactions between all involved components.Throughout
this Section, we elaborate on each of the phases of the designed protocol.

Next, we describe the Join interface initiated by the IAM , performed when an A-ECU or a CON-
NECT component doesn’t have a registered Attestation Key. The IAM acting as a Trusted Au-
thority regarding the In-Vehicle/MEC architecture, is responsible for issuing the Key Restriction
Usage Policies for each Attestation Key and creating unique key pairs for every VPE. It has to
be highlighted here that the Verifiable Policy Enforcer is instantiated in a different enclave as it is
part of CONNECT’s Trusted Computing Base either this is an ECU along side with the Attestation
Agent or it is the MEC along side the AIV. Given all the above, the actions followed in the context
of the Join phase are shown in Figure 5.5, and are described as follows:

1. The IAM sends to the corresponding Attestation Agent the Policy that its Attestation Key
has to be bound with. Such a policy represents that a specific policy restriction command
was executed (prior to the Attestation Agent been able to use the AK construction) and
that the IAM approves the runtime configuration of the Attestation Agent itself. By binding
the Attestation Key with such a Key Restriction Usage Policy, it is ensured that an old set
of Key Restriction Usage Policy assertions can be valid at the same time since the SW
version will be invalid.To this end, the Attestation Agent creates a random number using a
secure RNG and fetches the unique secret key that is a fingerprint of both the CPU and
the Enclave application (the Gramine-specific MREnclave Key.

2. The Attestation Agent computes the Hash Digest of the concatenation of the aforemen-
tioned values, seed = H(HWSecret||rand||P), in order to compute the key seed that
is going to be fed into a secure Key Derivation Function(KDF) and compute the pri-
vate Attestation Key AKpriv = KDF (seed). The public part of the Attestation Key is
AKpub = AKpriv ∗ G, where G is the Group generator. Upon the successful creation
of the Attestation Key pair, the AA computes the Hash Digest of the Attestation Private
Key, AKHASH = H(AKpriv, and computes the name of the Attestation Key, AKName =
H(AKpub. This action completes the creation of the Attestation Key structure and the Attes-
tation Private Key is discarded. By disgarding the AKpriv we make sure that the Attestation
Agent will have to recreate its key if and only if he is in correct configuration state, aka the
correct policy is enforced. The Attestation Key is then forwarded from the Attestation Agent
to VPE and finally to the IAM.

3. The IAM then calculates the Key pair of the VPE, V PEpriv = KDF (random), V PEpub =
V PEpriv ∗G. Afterwards IAM calculates the Key Restriction Usage Policy that the VPE key
should be bound to. With that Policy Digest, IAM Encrypts the V PEpriv and computes its
Hash Digest, V PEHASH = H(V PEpriv), in order to finalise the creation of the VPE Key
structure. The VPE Key structure is going to be wrapped properly and sent to the VPE
enclave.

• The VPE Policy represents that the VPE is indeed running on the approved version,
that the application is actually signed by the IAM and finally that the version of the
Tracer is the expected one.

CONNECT D4.2 PU – Public Page 80

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Attestation
Agent

VPE Tracer IAM

RootIDpriv,
RootIDpub,
HWSecert,
IAMpub,
Tracerpub

Tracerpub Tracerpriv,
Tracerpub

IAMpriv, IAMpub, Tracerpub,
EnclaveMeasurement, RootIDpub

rand = random(32)
P =
H(CC||IAMname)
seed =
H(HWSecert||rand||P)
AKpriv =
KDF (seed)
AKHASH =
H(AKpriv)
AKpub = AKpriv ∗G
AKname = H(AKpub)

AKname−−−−−−−−−−−−−−−−−−−−−→
AKname−−−→

rand = random(32)
V PEpriv = KDF (rand)
V PEpub = V PEpriv ∗G
PV PE = ComputeV PEPolicy()
V PEENC = ENC(V PEpriv, PV PE)
V PEHASH = H(V PEpriv)
Pauthorized = ComputedAuthorizedPolicy()
Ticket = SIGN(Pauthorized, IAMpriv)
Secret1 = V PEENC ||V PEHASH ||MRTracer||MRAA)
rand = random(32)
Secret1ENC = ENC(Secret1, rand)
HMACkey = KDF (rand,AKNAME)
Secret1MAC = HMAC(HMACkey, rand)
rand1ENC = RSAENC(rand,RootIDpub)
rand = random(32)
Secret2 = Ticket||V PEpub

Secret2ENC = ENC(Secret2, rand)

HMACkey = KDF (rand,AKNAME)
Secret2MAC = HMAC(HMACkey, rand)
rand2ENC = RSAENC(rand,RootIDpub)

Secret1ENC ,Secret1MAC ,rand1ENC ,Secret2ENC ,Secret2MAC ,rand2ENC←−−−
rand =
RSADEC(rand1ENC , RootIDpriv)
Secret1 =
DEC(Secret1ENC , rand)
HMACkey =
KDF (rand,AKNAME)
Secret1′MAC =
HMAC(HMACkey, rand)

Secret1MAC
?
=

Secret1′MAC
Secret2ENC ,Secret2MAC ,rand2ENC←−−−−−−−−−−−−−−−−−−−−−
rand =
RSADEC(rand2ENC , RootIDpriv)
Secret2 =
DEC(Secret2ENC , rand)
HMACkey =
KDF (rand,AKNAME)
Secret2′MAC =
HMAC(HMACkey, rand)

Secret2MAC
?
=

Secret2′MAC

Figure 5.5: CONNECT Verifiable Key Restriction Policy Update: JOIN

CONNECT D4.2 PU – Public Page 81

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4. With the VPE key creation now finalised, the IAM computes the accepted configuration of
the A-ECU/component and signs it with his own private key. Thus creating an Authorisation
Ticket.

• The A-ECU/component accepted configuration is dependent on the enclave measure-
ment of the Attestation Agent, on whether or not the software of the Attestation Agent
was signed by the IAM, on the runtime value acquired by the Tracer and finally on the
response of both the Tracer and the VPE.

5. The IAM creates two encrypted and authenticated secrets, the first secret is determined for
the VPE and contains the Encrypted V PEpriv, the V PEHASH ,the approved enclave mea-
surement of the Attestation Agent and the approved enclave measurement of the Tracer.
The other secret is destined for the Attestation Agent and contains the Authorisation Ticket
and the V PEpub. To create these encrypted and authenticated secrets we execute the
following algorithm:

(a) Create a Random number with a secure RNG, rand = random(32).

(b) Symmetrically encrypt the desired secret with the Hash of that freshly random gener-
ated number and the reference value of the enclave that is supposed to read it .

(c) Create an a MAC key derived by the freshly created random number and the Attesta-
tion Key name (MACKey = KDF (rand,AKName)).

(d) Compute an authentication digest over the secret we wish to encrypt, SecretMAC =
HMAC(Secret,MACKEY).

(e) Encrypt the random number generated in the first step with the unique identity key of
the A-ECU. This unique identity key is considered to be a public RSA Key.

6. Both the VPE and the Attestation Agent receive their Encrypted and authenticate secrets
respectively. The two components execute the following algorithm to extract their secrets:

(a) Decrypt using the unique identity key of the A-ECU to extract the random number
generated by the IAM.

(b) With the extracted random number each component computes the symmetric encryp-
tion secret key ENCKey = H(rand,MR).

(c) Decrypt with the ENCKey the encrypted secret.

(d) Create an a MAC key derived by the freshly created random number and the Attesta-
tion Key name.MACKey = KDF (rand,AKName).

(e) Compute an authentication digest over the secret we wish to encrypt, SecretMAC =
HMAC(Secret,MACKEY).

(f) If the acquired and the computed authentication digest match then the component can
accept the secret and store for future use.

5.4.3.1 Runtime Attestation Assertions

Next, we describe the runtime attestation interface initiated by a remote Verifier, performed
each time we need to collect evidences from an A-ECU or a CONNECT component, igniting
basically a challenge response mechanism. Through this protocol the Prover creates evidence

CONNECT D4.2 PU – Public Page 82

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Attestation
Agent

VPE Tracer IAM

HWSecert,
IAMpub,
Tracerpub,
Ticket,
V PEpub,
AKHASH

Tracerpub,
V PEENC ,
V PEHASH,
MRAA,
MRTracer

Tracerpriv,
Tracerpub

IAMpriv, IAMpub, Tracerpub,
EnclaveMeasurement, RootIDpub

nonce1 =
random(32)

nonce1−−−−−−−−−−−−−−−−−−−−−→
nonce2 =
random(32)

nonce1,nonce2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
TraceHash =
ExecuteTracing
σ1 =
SIGN(H(CC||nonce1||TraceHash), T racerpriv)
σ2 =
SIGN(H(CC||nonce2||MRTracer), T racerpriv)

σ1,σ2,T raceHash←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PolicyEnforcement(σ2, nonce2, T racerpub, V PEENC , V PEHASH)
σ3 =
SIGN(H(CC||nonce1||MRAA), V PEpriv)

σ1,σ3,T raceHash←−−−−−−−−−−−−−−−−−−−−−
PolicyEnforcement(σ1, σ3, T raceHash, nonce1, T racerpub, V PEpub, T icket, IAMpub))
σ =
SIGN(AKpriv, DIGEST)

Figure 5.6: CONNECT Verifiable Key Restriction Policy Update: Run Time Attestation

for the Verifier that he is indeed in a correct configuration but without disclosing any information
regarding its state. Given all the above, the actions followed in the context of the Join phase are
shown in Figure 5.6, and are described as follows:

1. A Verifier, which could either be the AIV, the TAF or the TCH, issues a challenge that is sent
to the Prover’s Attestation Agent.

2. The Attestation Agent creates a fresh nonce, nonceAA, that is sent to the VPE.

3. The VPE, creates on his end another fresh nonce , nonceV PE, and forwards them both to
the Tracer.

4. The Tracer takes security measurements for each requested untrusted application and cre-
ates two signatures one for the Attestation Agent σ1 and one for the VPE σ2.

• The first signature is to be sent to the Attestation Agent, signing a Com-
mand Code (CC) that represents the execution of a specific command pol-
icy, the nonce that was issued by the Attestation Agent and the measurements
taken from the runtime execution of the requested untrusted application, σ1 =
Sign(H(CC||nonceAA||MR), T racerpriv).

• The second signature is to be consumed by the VPE, signing a Command Code
(CC) that represents the execution of a specific command policy, the nonce that
was issued by the VPE and the enclave measurement of the Tracer, σ2 =
Sign(H(CC||nonceV PE||MRTracer), T racerpriv)

5. The VPE creates a fresh session and starts executing the policy enforcement algorithm in
order to get access to his key, RuntimePolicy = (00...00).

CONNECT D4.2 PU – Public Page 83

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

(a) Appends to the fresh session the measurement of the entity that signed his configura-
tion manifest, RuntimePolicy = H(RuntimePolicy||MRSigner).

(b) Appends to the session the measurement of the enclave application that is instantiat-
ing the VPE, RuntimePolicy = H(RuntimePolicy||MREnclave).

(c) Verifies the signature of the Tracer that is corresponding to the VPE, by first
recomputing the singed Digest, SignedDigest = H(CC||nonceV PE||MRTracer)
and using the public key of the Tracer completes the verification process,
V erify(σ2, SignedDigest, T racerpub). If the verification is completed successfully
the VPE computes the name of the Tracer’s key, TracerName = H(Tracerpub, and
appends it to the runtime policy, RuntimePolicy = H(RuntimePolicy||TracerName).

(d) The VPE then uses the RuntimePolicy to decrypt the encrypted V PEpriv that was
injected to him by the IAM. The now decrypted value is hashed and then compared
with the V PEHASH . If these two digests match, the VPE can use its secret key.

6. With the acquired V PEpriv the VPE computes a digital signature over the nonce that was
issued by the Attestation Agent and the approved measurement of the Attestation Agent,

σ3 = Sign(H(CC||nonceAA||MRAA), V PEpriv).The σ1 and σ3 are forwarded to the At-
testation Agent. The V PEpriv after the compilation of the signature gets destroyed.

7. The Attestation Agent creates a fresh session and starts executing the policy enforcement
algorithm in order to get access to his key, RuntimePolicy = (00...00).

(a) Appends to the fresh session the measurement of the entity that signed his configura-
tion manifest, RuntimePolicy = H(RuntimePolicy||MRSigner).

(b) Appends to the session the measurement of the enclave application that is instantiat-
ing the Attestation Agent, RuntimePolicy = H(RuntimePolicy||MREnclave).

(c) Appends to the session the Security measurement that the Tracer
extracted.RuntimePolicy = H(RuntimePolicy||ReferenceV aluei)∀i of the
untrusted attested applications.

(d) Verifies the signature of the Tracer that is corresponding to the Attes-
tation Agent , by first recomputing the singed Digest, SignedDigest =
H(CC||nonceAA||ReferenceV aluei)∀i of the untrusted attested applications
and using the public key of the Tracer completes the verification process,
V erify(σ2, SignedDigest, T racerpub). If the verification is completed successfully the
Attestation computes the name of the Tracer’s key, TracerName = H(Tracerpub, and
appends it to the runtime policy, RuntimePolicy = H(RuntimePolicy||TracerName).

(e) Verifies the signature of the VPE, by first recomputing the signed Digest,
SignedDigest = H(CC||nonceAA||MRAA) and using the public key of the VPE
completes the verification process, V erify(σ3, SignedDigest, V PEpub).If the verifi-
cation is completed successfully the Attestation computes the name of the VPE’s key,
V PEName = H(V PEpub, and appends it to the runtime policy, RuntimePolicy =
H(RuntimePolicy||V PEName).

(f) With the RuntimePolicy the Attestation Agent will verify the
Authorization Ticket that he acquired in the Join Phase,
V erify(RuntimePolicy, AuthorizationT icket, IAMpub). If the verification is
completed successfully the RuntimePolicy is resetted to RuntimePolicy =

CONNECT D4.2 PU – Public Page 84

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

H(CC||IAMName), where the CC is the command code of a specific policy
command.

(g) The Attestation Agent will recompute his AKpriv, using the same KDF that was used
during the Join Phase. The newly derived key gets hashed and compared with the
AKHASH. If these two digests match, then the Attestation Agent has successfully
recreated his AKpriv.

8. The Attestation Agent uses his AKpriv to sign the initial challenge the Verifier has sent to
him and then discards the AKpriv.

5.5 Constructing Zero-Knowledge Trustworthiness Claims

After the TCH has received the attestation attributes (together with the resulting trust opinions
from the TAF), it will then proceed in constructing the necessary Verifiable Presentations [11]
for proving the integrity of the trustworthiness claims to external entities (other vehicles or the
MEC TAF) in an anonymous and privacy-preserving manner. This is achieved through a newly
designed Threshold Anonymous DAA protoco by anonymising threshold Schnorr signatures, and
extending them to meet the standard security definitions of DAA, as described in Section 5.2.4.

The operation with which the TCH will calculate a verifiable presentation including the neceseary
trustworthiness claims can be seen in Figure 5.7. At a high level, after the TCH requests the gen-
eration of the trustworthiness claims, it will initiate a anonymous threshold signature protocol with
the appropriate A-ECUs. Each A-ECU, based on its defined CIV policies, will retrieve a secret
share with which they will participate in a threshold DAA scheme, as to calculate a digital signa-
ture over the trustworthiness claim requested and a challenge submitted by the TCH. After the
TCH receives the responses from the A-ECUs, it will calculate a DAA signature by anonymising
the threshold digital signature as well as the public key that validates it. It will then construct the
‘asymmetric-evidence‘ data structure described in Deliverable 5.1, Section 6.2.3.5, by setting the
signature value to be the calculated DAA signature. Lastly, the TCH will combine it with the mis-
behaviour report received from the MD and the trust opinion received from the TAF to construct
the final verifiable presentation to be returned to the IAM.

By constructing the ‘asymmetric-evidence‘ in this manner, the TCH can demonstrate in a privacy
preserving manner, that at least a threshold number of A-ECUs are in the correct state, based on
the defined CIV policies. The whole protocol is based on zero-knowledge proofs, meaning that
the entity receiving the verifiable presentation will not be able to extract any additional information
regarding the vehicle. In the rest of this Section we will present our anonymised threshold signa-
ture cryptographic protocol, together with details of its utilisation in the context of CONNECT.

5.5.1 High-Level Overview

The goal of our threshold DAA scheme is to distribute the DAA Signature generation operation
among multiple participants. At a high level, other than the DAA key and credential, generation
of a valid DAA signature will also require cooperation of at least t participants, where t is a
predefined threshold. More precisely, in our system we will consider the following entities:

• DAA Member (M). Similar to the standard DAA protocol, a DAA Member (TPM, secure
applications utilising TEE enabled microprocessors etc.,) being in possession of a DAA

CONNECT D4.2 PU – Public Page 85

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

A-ECU TAF MD TCH IAM

ei = Enc(si) skTAF skMD Yi, Y, skDAA, cred Y

Request Misbehaviour Report←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Gen Misbe-
haviour report
mr
sigmr =
DAA Sign(mr, skMD)

mr,sigmr−−−−−−−−−−−−−−−−−−−−−−−−−−→

Request Trust Opinion←−−
Gen Trust Opin-
ion to
sigto =
DAA Sign(to, skTAF)

(to,sigto)−−−→

Initiate Threshold Signatures←−−
Retrieve attesta-
tion key AKpriv
based on CIV
policies
si =
Dec(ei, AKpriv)

Threshold Signature sigth Computation−−→
Delete si sigDAA =

thDAA Sign(sigth, skDAA, cred)
Gen
asymmetric-
evidence with
mr, sigmr, to, sigto
and sigDAA

asymmetric-evidence−−−−−−−−−−→

Figure 5.7: High-Level Flow of Actions of CONNECT Threshold Anonymous DAA
scheme for constructing anonymous trustworthiness claims comprising the “harmo-
nized” attestation attributes extracted from the Enhanced CIV mechanism

credential and key, will be the entity producing the DAA signature. In the context of CON-
NECT, that functionality will be realised by secure containers using Intel’s SGX as the Root
of Trust. When using our threshold DAA scheme, the role of the DAA Member will be played
by the TCH.

• DAA Participant (Pi). In addition to the DAA Member, we will also consider multiple entities
that will receive a secret share from the DAA Issuer. At least t participants Pi will need
to correctly execute the threshold protocol and cooperate with M , for the DAA signature
generation procedure to succeed. In the context of CONNECT, this role will be played by
the A-ECUs.

CONNECT D4.2 PU – Public Page 86

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

At a high level, the standard DAA scheme is extended with the additional proof that M knows
a threshold Schnorr signature and a public key, signed by the DAA Issuer, which validates that
Schnorr signature.

5.5.1.1 DAA Join

During the DAA Join phase, M will generate a DAA key and receive a DAA credential (on that
key) from the Issuer. Additionally, each participant Pi will get a secret share si from the DAA
Issuer, which will then use in the threshold Schnorr signature computation.

More precisely, let us assume that n participants Pi will take part on the protocol. DAA Join will
start with M generating a secret DAA key (skDAA), a commitment to that secret key Commsk and
a proof of correctness of that commitment PoC. It will send Commsk and the PoC to the DAA
Issuer, who, if able to verify the PoC, will generate a secret for the threshold scheme skth and
corresponding public key Y . The Issuer will then divide skth into n shares {si}i∈[n], one for each
of the n participants Pi (using Shamir secret sharing). They will then generate a credential cred
over Y and Commsk which will be returned to M . Lastly, they will return si to each participant Pi

and delete skth.

5.5.1.2 DAA Sign

To generate a signature on message m with random challenge c, the DAA member M will first
execute the threshold signature computation protocol with k participants Pi, for k ≥ t, to get a
Schnorr signature on the challenge c. Note that at least t of the participants need to execute
the protocol correctly for that signature to be valid. In our scheme we will use FROST, which
is a 2-rounds Schnorr signature calculation protocol, with M as the aggregator. After receiving
the responses from each Pi and calculating the Schnorr signature z on c, M will produce a DAA
signature as follows:

• First, it will blind the threshold public key Y to get Ȳ . It will then generate a proof π1 that
Ȳ ”hides” a public key that is part of a valid credential received by the DAA Issuer. Then,
M will generate a proof π2 showcasing knowledge of a Schnorr signature z. Lastly, it will
generate a proof π3, showcasing that Ȳ is an anonymised public key that correctly validates
the Schnorr threshold signature z on the challenge c.

• Generate a signature proof of knowledge (SPK) on message m using the secret key skDAA

and the DAA credential cred.

The returned DAA Signature will include the generated proofs of knowledge, the blinded Schnorr
signature, and the blind commitment to the threshold signature’s scheme group public key.

5.5.2 Preliminaries

We will use pairing friendly groups for type 3 pairings. A pairing, is an efficiently computable
bilinear and non-degenerate map between two groups to a third group. Specifically, we will use
the following constructions:

CONNECT D4.2 PU – Public Page 87

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

• Groups G1, G2, GT , where G1 and G2 of prime order p and with no efficiently computable
homomorphism between them. We will denote the pairing operation as ĥ : G1×G2 → GT .

• We will denote the identity point of G∗ as 1G∗ . We will also reserve randomly sampled group
points g, g0, h, h0, q ∈ G1 and g2 ∈ G2 for use by our protocol. Those points are considered
system parameters.

• We will use H to denote a hash function. We will assume that all calls to H are independent
from each other. This can be achieved by using different domain separation tags or seeds
during each call to H.

Following, we will define the threshold-DAA related operations utilised by our scheme. Later,
we will present concrete instantiations for each function, as well as their usage during the Join
and Sign phases of our threshold DAA scheme, or during the verification of the returned DAA
signature.

• Gen(1λ) → ps: Gen is a deterministic algorithm that given a security parameter λ, it
returns a parameters set ps, including description of groups G1, G2 and GT , the prime order
p of G1 and G2, the pairing function ĥ, the hash function H and the points g, g0, h, h0, q ∈ G1

and g2 ∈ G2.

• thDAA Issue(ps, skI,C,Y) → cred: thDAA Issue is a randomised algorithm that
given the parameters set ps, the issuance secret key skI , and 2 G1 points C and Y (cor-
responding to the DAA secret key commitment C and threshold signature group public key
Y), returns a DAA cred including the point Y and the BBS signature (A, e) over C and Y
(i.e., cred = (Y, (A, e))).

• thDAA Sign(ps, skDAA, (R,σ), cred,m) → sigDAA: thDAA Sign is a ran-
domised algorithm that given the parameters set ps, DAA secret key skDAA, Schnorr signa-
ture (R, σ), DAA credential cred and message m, returns a DAA signature sigDAA.

• thDAA V erify(ps, pkI, sigDAA,m) → b: thDAA V erify is a deterministic algo-
rithm that given the parameters set ps, the issuing public key pkI , the DAA signature sigDAA

returned by the DAA Sign algorithm and a message m, returns a bit b, indicating if the sig-
nature is valid for the inputted message.

Table 5.5: Notations used in the description of the CONNECT threshold DAA scheme.

Notation Description
TD The Trusted Dealer of the threshold signature scheme.
Si The i’th Signer participating in the threshold signature scheme.
SA The Signature Aggregator of the threshold signature scheme.
IDAA The trusted authority issuing DAA credentials.
Pi The i’th participant of the threshold DAA scheme.
M The DAA Member.
Del The Delegated authority, able to update the threshold of the threshold DAA scheme.
skDAA The DAA key, held by the DAA Member M .
ski The i’th secret key share, held by Pi, used to generate Schnorr signature shares.
Y The group public key of the threshold signature scheme.
Yi The public key of the i’th participant Pi, used to verify its Schnorr signature share.
skD The secret key of the delegated authority Del.

CONNECT D4.2 PU – Public Page 88

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

PKD The public key of delegated authority Del.
skI The secret key of the DAA Issuer IDAA.
PKI The public key of the DAA Issuer IDAA.
sigDAA The DAA signature produced by M .
ps The parameter set for the threshold DAA scheme (curve definition, public points etc.,).
cred The DAA credential issued by the DAA Issuer IDAA.
m The message signed by the DAA signature.
SPK A signature proof of knowledge.

5.6 Anonymising Threshold Signatures

The main idea of our scheme is to use the FROST protocol described in Section 5.2.3, to generate
a Shnorr signature z = (R, σ) and then “hide” the public key Y which verifies z, by proving
knowledge of both Y , R and σ such that RY c = gσ, (where c the challenge of the Schnorr
signature), and of a DAA credential cred over Y (among other things), signed by the DAA Issuer
IDAA. This allows proving the correct execution of the threshold protocol (in our case FROST), in
a privacy preserving manner. For CONNECT, this will enable a vehicle to showcase integrity, i.e.,
the correct state of a threshold number of A-ECUs, in zero-knowledge, meaning without reviling
any other information to external entities, since the (unique) public key Y and DAA credential cred
will never be reviled. Lastly, our scheme contributes to the zero-trust architecture of CONNECT,
given that in our scheme, the only entity that we will consider trusted is the DAA Issuer IDAA.

In our threshold DAA protocol, we consider the following entities; the set of participants Pi, a
DAA Member M and the DAA Issuer IDAA. Mapped to the entities participating in the FROST
threshold signature protocol as described in Section 5.2.3, each Pi will execute the Signer’s Si

functionality, the DAA Member M will execute the Signature Aggregator’s SA functionality and
finally the DAA Issuer IDAA will play the role of the Trusted Dealer TD. Of course, each of these
entities will be tasked with additional functionalities.

More formally, in our scheme, initially the DAA Issuer will generate an issuing key pair
(skI , PKI = gskI2) and publish the public key PKI . IDAA will also generate a private/public
key pair (skth, Y = gskth) for the threshold scheme. M will derive a DAA key skDAA and submit a
commitment C = hskDAA to the Issuer. After going though an integrative proof of correctness of
the commitment C, they will receive a credential issued by IDAA over their key, as well as the pub-
lic key of the threshold protocol Y . To generate the DAA credentials, we will use BBS Signatures
[42]. Specifically, IDAA will sample random scalar e $←− Zp and calculate the credential’s signature
to be (A, e), where A = (g0h

skDAAY)1/(skI+e). The final DAA credential will be cred = (Y, (A, e)).

To prove knowledge of such a credential, as well as a the Schnorr signature (R, σ) with challenge

c = H(R,PKI ,m), the DAA member M will sample random ã1, ã2, b̃
$←− Zp and set Ȳ = Y ã2 ,

Ā = Aã1ã2 , R̄ = (Rgb̃)ã2 . M will also set D = (g0 ∗ C)ã2 and B = Dã1Ȳ ã1Ā(−e) (note that
B = ĀskI) and ã′2 = 1/ã2. Finally, M will set γ = ã2(σ + b̃) and calculate a signature proof of
knowledge (SPK) π over a message m as follows;

π = SPK{(γ, ã1, ã′2, b̃, e, skDAA) :

R = R̄ã′2g−b̃ ∧ R̄Ȳ c = gγ ∧B = Dã1Ȳ ã1Ā(−e) ∧ g0 = Dã′2 · h−skDAA}(m)
(5.1)

The final DAA Signature on m will be sigDAA = (R, R̄, Ȳ , Ā,D,B, π) (note that π is a signature

CONNECT D4.2 PU – Public Page 89

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

thDAA Issue(ps, skI,C,Y) →
cred

thDAA Sign(ps, skDAA, (R,σ), cred,m) → sigDAA

1. (G1, G2, GT , p, g, g0, h, h0, g2, H) =
ps

2. Sample random e
$←− Zp

3. A = (g0CY)1/(skI+e)

4. return cred = (Y, (A, e))

1. (G1, G2, GT , p, g, g0, h, h0, g2, H) = ps

2. (Y, (A, e)) = cred

3. sample ã1, ã2, b̃
$←− Zp

4. Set the following:

(a) Ȳ = Y ã2

(b) Ā = Aã1ã2

(c) R̄ = (Rgb̃)ã2

(d) D = (g0 ∗ C)ã2

(e) B = Dã1Ȳ ã1Ā(−e)

(f) ã′2 = 1/ã2 and γ = ã2(σ + b̃)

5. c = H(R,PKI ,m)

6. Sample random rγ, ra1 , ra′2 , rb̃, re, rsk
$←− Zp.

7. T1 = R̄
ra′2g

−rb̄
0

8. T2 = grγ

9. T3 = Dra1 Ȳ ra1 Ā−re

10. T4 = D
ra′2h−rsk

11. ch = H(R, R̄, Ȳ ,D,B, Ā, T1, T2, T3, T4,m)

12. Set ŝ1 = rγ+ch∗γ, ŝ2 = ra1+c∗ã1, ŝ3 = ra′2+ch∗ã′2, ŝ4 = rb̃+ch∗b̃,
ŝ5 = re + ch ∗ e and ŝ6 = rsk + ch ∗ skDAA.

13. return sigDAA = (R, R̄, Ȳ , Ā,D,B, {ŝi}i∈{1,2,...,6}, ch)

Figure 5.8: Threshold DAA Issue and Sign operations.

proof of knowledge over m). To validate the signature, the Verifier will check if ĥ(Ā, PKI) =
ĥ(B, g2), calculate the challenge c = H(R,PKI ,m) and validate π. Note that our scheme proves
knowledge of a Schnorr signature (R, σ), without directly showcasing that it was produced by a
threshold signature scheme. The fact that (R, σ) was produced by the correct execution of the
FROST protocol is guaranteed given that the public key that validates that signature is signed by
IDAA. Given that IDAA signs the public key corresponding to the group {Pi}i∈[n], then M must
correctly execute FROST, to get a signature valid under that public key. This allows our scheme
to be threshold Schnorr signature protocol agnostic.

Analysis. Showcasing correctness of the above protocol is straight forward. We will quickly
outline here that the described scheme is a proof of knowledge of a valid DAA credential, over a
threshold group public key Y , which verifies the Schnorr signature (R, σ). Run the extractor of
π to get (γ, ã1, ã′2, b̃, e, skDAA) so that all equations of π hold. We assume that all steps of the
verification process complete successfully. From the fact that ĥ(Ā, PKI) = ĥ(B, g2) we get that
B = ĀskI . Using that fact and the third equation of π we get that ĀskI+e = Dã1 · Ȳ ã1 .

If ã1 = 0 since Ā ̸= 1G1 and ĀskI+e = 1G1 , we can conclude that skI = −e. Such an extractor
can be used to break discrete log in G1. As a result we assume that ã1 ̸= 0 meaning that

CONNECT D4.2 PU – Public Page 90

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

thDAA V erify(ps, pkI, sigDAA,m) → b

1. (G1, G2, GT , p, g, g0, h, h0, g2, H) = ps

2. (R, R̄, Ȳ , Ā,D,B, {ŝi}i∈{1,2,...,6}, ch) = sigDAA

3. If ĥ(Ā, PKI) ̸= ĥ(B, g2), return 0.

4. c = H(R,PKI ,m)

5. T̂1 = R−chR̄ŝ3g−ŝ4

6. T̂2 = (RY c)−chgŝ1

7. T̂3 = (B)−ch(DȲ)ŝ2Ā−ŝ5

8. T̂4 = g−ch
0 Dŝ3h−ŝ6

9. Calculate chv = H(R, R̄, Ȳ ,D,B, Ā, T̂1, T̂2, T̂3, T̂4,m)

10. If ch ̸= chv, return 0.

11. return 1

Figure 5.9: Threshold DAA Verify operations.

(Ā1/ã1)skI+e = D · Ȳ .

From the last equation of π we get that Dã′2 = g0 ·hskDAA . We assume that ã′2 ̸= 0, since otherwise
we will get that g0 = h−skDAA and such an extractor could be used to solve DL in G1. By setting
Y = Ȳ ã′2 we get that (Āã′2/ã1)skI+e = g0h

skDAAY , meaning that (Āã′2/ã1 , e) is a valid DAA credential
over the DAA key skDAA and a point Y .

All that remains is to show that Y = Ȳ ã′2 is a valid public key that verifies a Schnorr signature
known to the DAA Member M . From the first equation of π we get that R̄ = (Rgb̃)1/ã

′
2 . From the

second equation of π we get that Rgb̃(Ȳ ã′2)c = gγ∗ã
′
2 => RY c = gγ∗ã

′
2−b̃. Setting then σ = γ∗ã′2−b̃

we get that (R, σ) is a valid Schnorr signature for the public key Y = Ȳ ã′2 , which is signed by the
DAA Issuer.

5.6.1 Enhanced Direct Anonymous Attestation (DAA) Commitments

In the following Sections we will describe the Join, Sign and Verify operations of our DAA Scheme,
as shown in Figures 5.10 and 5.11. The main difference with a standard, non-threshold, DAA
protocol, is that during the Sign procedure, at least t participants Pi need to correctly execute the
protocol, for the final outputted DAA signature to be valid. Our scheme will use the thDAA Issue,
thDAA Sign and thDAA V erify operations, as shown in Figures 5.8 and 5.9, which follow the
method described in Section 5.6. Note that we consider the implementation of the Gen algorithm,
described in Section 5.5.2, to be implementation specific and outside the scope of this document.
In this Section, we assume that the parameters set ps has already be generated and distributed
to all involved parties.

CONNECT D4.2 PU – Public Page 91

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Participant DAA Member DAA Issuer

skDAA skI , PKI = gskI

u
$←− Zp

C=hskDAA ,C̃=hu

−−−−−−−−−−→
n

$←− Zp
n←−

ch =
H(C, C̃, n), z =
u+ ch ∗ skDAA

z−→
chI = H(C, C̃, n)

Verify CchI C̃ = hz

skth
$←− Zp

ski =
ShamirSecretShare(skth)
Y = gskth , Yi = gski

(A, e) =
thDAA Issue (ps, skI , Y, C)

Verify cred
cred=(Y,(A,e))←−−−−−−−−

Verify gski = Yi
ski,Yi←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5.10: Threshold DAA Join.

5.6.1.1 Join

During the Join phase, M will get a credential over a secret key that they hold. In addition, each
participant Pi will get a secret key share ski, with which they will participate to the execution of
the threshold protocol.

To start the procedure, M will follow the steps bellow;

1. M will generate its DAA key, skDAA, together with a commitment C = hskDAA on that key.
They will then execute an interactive protocol with IDAA, as to prove knowledge of the skDAA

and correctness of the commitment C. The steps are the following;

(a) M will choose random scalar v $←− Zp and send (C, C̃ = hv) to IDAA.

(b) Upon receiving the tuple (C, C̃), IDAA will check that it has a valid value (i.e., that

C, C̃ ∈ G1 \ {1G1}) and if true, choose random nonce n
$←− Zp to return to M .

(c) After receiving n, M will calculate ch = H(C, C̃, n) and respond with z = v + ch ∗
skDAA.

(d) Finally, after IDAA receives M ’s response, will calculate chI = H(C, C̃, n) and verify
the proof by checking if CchI C̃ = hz.

2. If the above protocol executes successfully, IDAA will first set up the Threshold Signature
protocol by generating a random skth

$←− Zp and using Shamir secret sharing to divide it
into n shares {ski}i∈[n] with a threshold t for re-calculating the original secret skth.

CONNECT D4.2 PU – Public Page 92

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

3. IDAA will calculate a credential cred to sign the Threshold Signature’s group public key
Y = gskth and M ’s DAA Key commitment C. To do that, IDAA will use the thDAA Issue
operation described in Figure 5.8, to get (Y, (A, e)) = thDAA Issue(ps, skI , C, Y). IDAA

will then return the credential cred = (Y, (A, e)) and all the {Yi = gski}i∈[n] to M . Addition-
ally, IDAA will send each secret key share ski to each participant Pi through a secure and
authenticated channel (setting up such a channel is outside the scope of this document).

4. Lastly, M will verify the received credential cred = (Y, (A, e)) by checking if ĥ(A,PKIg
e
2)

?
=

ĥ(g0Y C, g2).

If the above protocol executes correctly, each Pi will have receive a secret key share ski with
which they can participate to the execution of a Threshold Signatue protocol and M will have
received a credential cred, over the their DAA secret key skDAA and the group public key Y .

5.6.1.2 Sign

To sign a message m, the steps are the following;

1. First, M will execute a Threshold Schnorr Signature scheme, (in our case FROST) with
{Pi}i∈S to calculate a valid Schnorr signature z = (R, σ) on m. The main difference be-
tween a standalone execution of FROST, is that in our threshold DAA scheme the calcu-
lation of the Schnorr signature challenge will substitute the group’s public key Y with the
public key PKI of the DAA Issuer. More precisely, the challenge c will be calculated as
c = H(R,PKI ,m). Although that change normally would be insecure, since it would allow
the forging of a Schnorr signature, valid under a different public key. We solve this issue, by
proving that the public key which validates the Schnorr signature is signed by IDAA. Note
that if z is valid, it means that Y cR = gσ.

2. If the Threshold protocol executes correctly, M will use the procedure described in Section
4, to generate the DAA signature using sigDAA = thDAA Sign(ps, skDAA, (R, σ), cred,m),
where sigDAA = (R, R̄, Ȳ , Ā,D,B, π) over m, showcasing knowledge of a credential cred
signed by IDAA, over a secret key that they possess skDAA and a public key Y that correctly
validates a Schnorr signature known to M .

5.6.1.3 Verify

To verify a DAA signature sigDAA on m, the steps are the following;

1. The Verifier will first have to parse sigDAA to get (R, R̄, Ȳ , Ā,D,B, π) and check that all
points (i.e., R, R̄, Ȳ , Ā,D,B and all points in π) are in G1 \ {1G1} and that all scalars (i.e.,
the scalars in π) are in Zp \ {0}.

2. They will check if ĥ(Ā, PKI)
?
= ĥ(B, g2), calculate c = H(R,PKI ,m) and verify π.

CONNECT D4.2 PU – Public Page 93

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Participant DAA Member DAA Verifier

ski, Yi skDAA, Y, Yi, cred PKI
Run FROST on m←−−−−−−−−−
Get Schnorr signature(R,σ)−−−−−−−−−−−−−−→

Verify (R, σ) with Y

sigDAA = thDAA Sign(ps, skDAA, cred, (R, σ),m)

sigDAA−−−−→
res =
thDAA Verify(ps, PKI , sigDAA,m)

Figure 5.11: Threshold DAA Sign.

5.7 Threshold Update Delegation

We will present here a protocol with which IDAA will delegate to a third authority (Del) the ability
to update the threshold in the Threshold Schnorr signature scheme. At a high level, IDAA will set
a minimum threshold t for the threshold signature protocol. Del will then be able to coordinate
with each Pi, as to generate a new instantiation of the threshold protocol, with threshold t′ ≥ t.
To guarantee that only the designated entity will be able to update the threshold scheme, Del
will generate a key pair and execute a flow similar to DAA Join described in Section 5.6.1.1. If
successful, IDAA will include Del’s secret key (or rather a commitment to that secret key) to the
DAA credential cred, returned to M . At a high level, the steps to generate a DAA signature are
the following:

• Updating the threshold: Del will send update values to each Pi, which they will use to
update their secret key shares. Del will also calculate the updated public key Y ′ of the new
threshold scheme, which they will send signed to M .

• Blinding the public key: After receiving the Y ′ and Del’s signature, M will commit and
blind Del’s public key. They will then generate a proof of knowledge of Del’s signature, over
the updated public key Y ′, valid under the committed public key.

• Generating the signature: Finally, M will generate a proof of knowledge of a Schnorr
signature, valid under Y ′ and a credential issued by IDAA, over their DAA key and Del’s
public key. Note that the verifier of the DAA Signature will never see either the public key Y ′

of the threshold scheme (M will prove knowledge of a signature from Del over Y ′), neither
the public key of Del (M will commit to their public key and prove that it is signed by IDAA).

The above procedure showcases that M is in possession of a valid threshold signature, gener-
ated by a Schnorr threshold signature protocol, instantiated by IDAA and updated by a proper
(i.e., certified) delegated authority Del. The verifier of the signature will still be unable to extract
any additional information (for example the identity of Del or the threshold value t).

CONNECT D4.2 PU – Public Page 94

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

In CONNECT, the TAF will undertake the role of the delegated authority Del, where, based on
runtime measurements, will update threshold of our DAA scheme as needed by different applica-
tions.

5.7.1 Updating the Threshold

Let the delegate authority Del requesting an update to a threshold t′. Note that the new threshold
t′ can only be greater or equal than the original threshold t set by IDAA. Del will coordinate with
each Pi in order for the threshold to be updated. They will then compute the new group public key
Y ′, which they will provide signed to M . We will note that any entity can coordinate an update
to a new threshold t′. Our scheme is based on the fact that DAA Sign will not work unless the
update is coordinated by a authority ”trusted” by IDAA. That said, it would be a good practice for
each Pi to also authenticate Del during the threshold update phase. We will omit such details in
this version of the document.

To create an instantiation of the threshold protocol scheme, with threshold t′ ≥ t the steps are
the following:

1. Let Del choose random polynomial P ′ of degree t′ so that P ′(x) = s′+at+1x
t+1+at+2x

t+2+

...+ at′x
t′ for random {s′, at+1, at+2, ..., at′}

$←− Zp.

2. For each participant Pi, Del will calculate the ”update value” △i = P ′(i). To calculate the
updated group public key Y ′, Del will compute Y ′ = Y gs

′
.

3. After each Pi receives△i they will updates their secret key shares to get sk′
i = ski +△i.

Note that, if we set F = P +P ′ (where P the original t-degree polynomial used by IDAA to divide
the secret skth to n shares) the new secret key share of Pi is sk′

i = F (i), where F of degree t′

so that F (0) = skth + s′. Additionally, Y ′ = gskth+s′ . So each sk′
i is a valid secret key share for a

threshold Schnorr signature with threshold t′ and Y ′ is a valid group public key for that scheme.

In the following Sections, We will present an extension of the DAA protocol described above, as
to allow M to also prove knowledge of a signature from Del, on the updated threshold signature
group public key Y ′. To do that, we will require from Del to also execute a protocol similar to the
DAA Join procedure described in Section 5.6.1.1. More specifically, Del will generate a key pair
(skD, PKD = gskD2), and then commit to the their secret key with Q = qskD . To prove correctness
of that commitment to the IDAA, the procedure is the same as the one detailed at step 1 of the
DAA Join operation, described in Section 5.6.1.1. Del will then send Q and their public key
PKD to M , who will forward them to IDAA, together with their own commitment C = hskDAA and
proof of correctness to their DAA secret key skDAA. IDAA will generate the threshold signature
group key pair (skth, Y = gskth) and sign everything together to get the credential (A, e), where
A = (g0 ·Q · C · Y)1/(skI+e). IDAA will return (Y, (A, e)) to M and Y to Del.

After Del updates the threshold and calculates the new group public key Y ′ as mentioned above,
they will sign Y ′ by calculating (AD, eD) where AD = (g0 · Y ′)1/(skD+eD) for randomly sampled

eD
$←− Zp. They will send Y ′, s′, (AD, eD) to M who during the DAA Sign phase of our protocol,

in addition to the procedure described in Section 5.6.1.2, will also have to prove knowledge of
a signature from Del, without of course reveling Del’s public key PKD. They will do that by
committing to Del’s public key, and simultaneously showcasing that the committed public key is
signed in their DAA credential (A, e) and that they know a valid signature under a committed
public key.

CONNECT D4.2 PU – Public Page 95

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

5.7.2 Blinding the Public key

In this Section, we will consider the more general case, where a prover generates a zero-
knowledge proof of knowledge of a valid signature from an issuer to a verifier, without revealing
the issuer’s public key. As a signature, we will use a BBS signature (A, e, s) over a point P with

A = (g0h
sP)1/(x+e) for random e, s

$←− Zp, where x the secret key of the issuer of the signa-
ture. Let PK = gx2 be the public key that validates that signature. Notice that we re-introduce
the randomness s as part of the signature, as described in [TBD], in contrast to the construction
of [TBD], where is proven that even signatures without the s value are secure. The reason will
become apparent later, but at a high level, in our construction the s value is used to guarantee
zero-knowledge without relying to computational assumptions.

In our scheme, the prover will commit to the Issuer’s public key, and then calculate a zero-
knowledge proof of knowledge of a signature, valid under the committed public key. For our
use case, during the proof of knowledge calculation, the ”signed point” P will not be disclosed.

To that end, first the prover will choose random r1, r2, set r′i = 1/ri, i = 1, 2 and calculate
¯PKD = PK

r′1
D to blind the public key. To blind the signature, they will set Ā = Ar1r2 , P̄ = P r2 and

B1 = (g0h
s
0)

r2P̄ Ā−r′1e (= (Ār1)skD). Then, they will choose random r3
$←− Zp, set D1 = (g0h

s)r2hr3 ,
r′ = r′1r

′
2 and s′ = s− r′2r3.

Finally, the prover will sample r4
$←− Zp, calculate K = Ār′1hr4 , set r′4 = r4e− r3 and calculate the

signature proof of knowledge π1 as follows,

π1 = SPK{(e, r′4, r′1, r4, r′2, s′),

B1 = D1P̄K−ehr′4 ∧K = Ār′1hr4 ∧ g0 = D
r′2
1 hs′}

(5.2)

The final proof will be (¯PK,B1, D1, Ā, P̄ ,K, π1). To validate the proof, the Verifier will check if
ĥ(Ā, ¯PK) = ĥ(B1, g2) and verify π1.

Analyses: We will give here an overview of the security proof, showcasing that the above proce-
dure is a proof of knowledge of a valid signature under the public key PK committed in ¯PK. Run
the extractor of π1 to get (e, r′4, r

′
1, r4, r

′
2, s

′) so that all equations of π1 hold. Let δ be the discrete
logarithm of ¯PK on the basis of g2 (i.e., ¯PK = gδ2). From the fact the ĥ(Ā, ¯PK) = ĥ(B1, g2), we
can conclude that Āδ = B1.

From the last equation of π1 we get that g0 = D
r′2
1 h−s′ . We assume that r′2 ̸= 0 (otherwise for

the extracted s′ it will hold that g0 = h−s′ , and that extractor will be able to solve DL in G1). As a
result, we can deduce that D1 = (g0h

s′)1/r
′
2 . Substituting D1 in the first equation of π1 we get

Āδ = (g0h
s)1/r

′
2P̄K−ehr′4 (5.3)

From the second equation of π1, we get that K = Ār′1hr4 . Substituting K in 5.3 we get that,

Āδ = (g0h
s)1/r

′
2P̄ Ā−er′1hr′4−er4 (5.4)

We will distinguish between two cases; r′1 = 0 and r′1 ̸= 0.

r′
1 = 0. From 5.4, we get Ār′2δ = g0h

s′P̄ r′2hr′2(r
′
4−er4). Setting, ŝ = s′+r′2(r

′
4−er4), ê = 0, P̂ = P̄ r′2

and Â = Ār′2 , we get that Âδ+ê = g0h
ŝP̂ , meaning that (Â, ê) is a valid signature generated from

CONNECT D4.2 PU – Public Page 96

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

the secret key δ, over the point P̂ , committed in P̄ , valid under the public key ˆPK, committed in
¯PK.

r′
1 ̸= 0. From 5.4 we get that,

(Ār′1)δ/r
′
1+e = (g0h

s)1/r
′
2P̄ hr′4−er4 =>

(Ār′2r
′
1)δ/r

′
1+e = g0h

s+r′2(r
′
4−er4)P̄ r′2

Setting ŝ = s+r′2(r
′
4−er4), δ̂ = δ/r′1, ê = e, P̂ = P̄ r′2 , δ̂ = δ/r′1, ˆPK = ¯PK

1/r′1 and Â = Ār′2r
′
1 , we

get that Âδ+ê = g0h
ŝP̂ , meaning again that (Â, ê) is a valid signature generated from the secret

key δ̂, over the point P̂ , committed in P̄ , valid under the public key ˆPK, committed in ¯PK.

As a result of independent interest, the above methodology can be used be used to straighten the
privacy properties of an anonymous credential system, by allowing the Prover to hide the Issuer
of a credential.

5.7.3 Generating the Signature

To generate a DAA signature, M will combine the techniques described in Section 5.6 and 5.7.2,
to prove knowledge of a Schnorr signature (R, σ) valid under a public key Y ′, which is signed by a
proper delegated party (i.e., an entity whose public key is included in the DAA credential, created
by IDAA).

Lets assume that M , {Pi}i∈[n] and IDAA executed the DAA Join protocol described in Section
5.6.1.1, with the addition of Del’s inputs, as described in Section 5.7.1. Upon successful resolu-
tion, each Pi, i ∈ [n], will have received a secret key si from IDAA, while M will have received the
DAA credential (Q, Y, (A, e)), where A = (g0h

skDAAQY)1/skI+e = (g0h
skDAAqskDY)1/skI+e, where

skDAA the DAA secret key of M , Q = qskD the commitment to Del’s secret key (skD) and Y the
public key of the initial Threshold Signature Scheme, initiated by IDAA (with threshold t).

After Del updates the threshold, they will communicate to M all the necessary values to generate
the DAA signature for the new threshold. Then, during the DAA Sign phase, M will initiate the
threshold signature scheme with the chosen Pi. At the end, M will have;

• A Schnorr signature z = (R, σ).

• The public key Y ′, validating z.

• A signature from Del, over that public key (Y ′).

• A credential from IDAA, over the secret key of Del and the DAA secret key of M .

M needs to prove knowledge of those elements, without disclosing any of them. To that end,
they will create a commitment Ȳ ′ to the public key of the threshold scheme Y ′ and a commitment
¯PKD on Del’s public key PKD. Then they will use the techniques described in the previous

Sections as follows:

• Instantiation of threshold scheme by trusted entity. To prove that z is produced by a
threshold signature scheme whose threshold is updated by a trusted (by IDAA) entity (i.e.,
Del), M will execute the following steps,

CONNECT D4.2 PU – Public Page 97

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

– Prove knowledge of the signature (AD, eD) over the public key that validates z (com-
mitted in Ȳ ′).

– Prove knowledge of a DAA credential, over the secret key corresponding to the public
key committed to ¯PKD, used to generate (AD, eD).

• Correct threshold scheme execution. M will prove knowledge of z and validity of z under
the public key committed in Ȳ ′.

The above steps achieve two goals. First, they establish the trust relationship between the in-
volved parties, i.e., the fact that IDAA has certified both Del and M , one to update the threshold
scheme and the other to produce DAA signatures. Second, they prove that the protocol is exe-
cuted correctly, i.e., that M has coordinated correctly with at least t′ participants Pi to produce
the DAA signature, where t′ is set by Del and is greater or equal to the minimum threshold
established by IDAA. In the rest of this Section, we will describe the above steps in detail,

Instantiation of threshold scheme by trusted entity. To prove that the threshold of the Thresh-
old Signature scheme is set by a certified delegated authority Del, M will commit to Del’s public
key and prove knowledge of a signature (AD, eD) valid under the committed public key.

To that end, M will execute the procedure described in Section 5.7.2, setting (A, e) = (AD, eD),
PK = PKD and P = Y ′. Note that this will prove knowledge of a signature valid under a public
key committed in ¯PKD, over the point committed in Ȳ ′ (see bellow).

We will use those facts later to prove that the entity that updated the threshold scheme is certified
by IDAA, by showing that M ’s DAA credential contains a commitment to the same value as ¯PKD

(i.e., the secret key of Del), and that the point they signed (committed in Ȳ ′) is a public key that
verifies the Schnorr threshold signature z.

Specifically, M will choose random r1, r2
$←− Zp, set r′i = 1/ri, i = 1, 2 and calculate ¯PKD =

PK
r′1
D to blind the public key. To blind the signature, M will set ĀD = Ar1r2

D , Ȳ ′ = Y ′r2 and B1 =

(g0h
s
0)

r2Ȳ ′Ā
−r′1eD
D (= (Ār1)skD). Then, M will choose random r3, r4

$←− Zp, set D1 = (g0h
s)r1r2hr3 ,

K = Ā−e/r1hr4 , r′ = r′1r
′
2 and s′ = s− r′r3, r′4 = r4r1. Finally, M will calculate the signature proof

of knowledge π1 as follows,

π1 = SPK{(e, r′4, r′1, r4, r′2, s′),

B1 = D1Ȳ ′Kh−r4 ∧ 1G1 = Kr1Āeh−r′4 ∧ g0 = D
r′2
1 h−s′}

(5.5)

Note that the DAA credential also “signs” the point Q = qskD . To showcase that ¯PKD and the DAA
credential contain a commitment to the same value (skD, meaning that the threshold is updated
by a certified entity), M will first generate a commitment to Q by choosing random a1

$←− Zp and
setting Q̄ = Qa1 . M needs to show that they know an opening of the commitment Q̄, which
will it self be a commitment to the secret key skD that used to calculate the signature (AD, eD)
(but not knowledge of that value, since M doesn’t know skD). M will do this by showcasing
that the opening of the commitment Q̄, commits to the same value (skD) as the opening of
the commitment ¯PKD. Later, M will also showcase that the aforementioned opening of the
commitment Q̄, is signed by their DAA credential cred (showing that way that the threshold is
updated by a certified authority, or more precisely, by a certified public key).

To that end, M will set a′1 = 1/a1 and ˆPKD = ¯PK
1/a′1r

′
1

D (= PKa1
D) and ¯̂

PKD = ˆPK
r′1
D . They will

then calculate the following proof of knowledge,

CONNECT D4.2 PU – Public Page 98

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

π2 = SPK{(a′1, r′1), ¯PKD =
¯̂

PK
a′1
D ∧

¯̂
PKD = ˆPK

r′1
D} (5.6)

The returned proof will be (Q̄, ˆPKD,
¯̂

PKD, π2). Note that we will need to calculate π1 and π2

together, as to prove that the r′1 that M proves knowledge of in π1 is the same with the one in π2.
Additionally, M will need to prove knowledge of a Schnorr signature (R, σ), valid under Y ′. To
that end, M will shamble random ã and set R̄ = (Rgã)r2 and γ = r2(σ + ã). M will then extend
π1 to the following proof,

π1,2 = SPK{(eD, r′1, r′4, r′, s′, r4, a′1, γ, ã) :
B1 = D1Ȳ ′Kh−r4 ∧ 1G1 = Kr1ĀeD

D h−r′4 ∧ g0 = Dr′

1 h
−s′

∧ ¯PKD =
¯̂

PK
a′1
D ∧

¯̂
PKD = ˆPK

r′1
D

∧R = R̄r′2g−ã ∧ R̄Ȳ ′c = gγ}

(5.7)

To verify that Q̄ and ¯PKD are commitment to the same value, the verifier will check if ¯̂
PKD ̸= 1G2

and if ¯PKD ̸= 1G2 , validate π2 and then check that ĥ(Q̄, g2) = ĥ(q, ˆPKD).

Analyses. We will give here a quick overview for the correctness of the above protocol. Set δ to
be the discrete log of ¯PKD in the base of g2, i.e., ¯PKD = gδ2. Running the extractor described
in Section 5.7.2, we get a scalar r′1 and a signature (AD, sD, eD) valid under a public key PKD

(known by M).

By running the extractor on the extended proof π1,2, we also get a′1 (in addition to all the other

values) such that ¯PKD =
¯̂

PK
a′1
D and ¯̂

PKD = ˆPK
r′1
D . From that we can conclude that r′1 ̸= 0,

since ¯̂
PKD ̸= 1G2 and that a′1 ̸= 0 since ¯PKD ̸= 1G2 . Additionally, it follows that ¯PKD = ˆPK

r′1a
′
1

D .
Lets denote with d1 the discrete log of ˆPKD in the base of g2 (i.e., ˆPKD = gd12). We can conclude
that ˆPKD = gd12 = g

δ/r′1a
′
1

2 => d1 = δ/r′1a
′
1. From the fact that ĥ(Q̄, g2) = ĥ(q, ˆPKD), we can

conclude that Q̄ = qd1 = qδ/r
′
1a

′
1 . Set Q = Q̄a′1 (= qδ/r

′
1). From the analyses of Section 5.7.2,

and from the fact that r′1 ̸= 0, its easy to see that the secret key that generated the signature
(AD, sD, eD) is skD = δ/r′1 and Q = qskD . Later, M will also prove that the extracted Q value is
included in their DAA credential.

Additionally, similar to the analyses in Section 5.6, the extractor will return (γ, a′1, ã, eD, skDAA)
so that all equations of π hold. We assume that all steps of the verification process complete
successfully. From the analyses in Section 5.7.2, we know that the extractor can return signature
(AD, sD, eD) over the point Y ′ = Ȳ ′r

′
2 , valid under the public key PKD, committed to ¯PKD.

All that remains is to show that Y ′ = Ȳ r′2 is a valid public key that verifies a Schnorr signature
known to the DAA Member M . From the sixth equation of π1,2 we get that R̄ = (Rgã)1/r

′
2 . From

the seventh equation of π1,2 we get that Rgã(Ȳ ′r
′
2)c = gγ∗r

′
2 => RY ′c = gγ∗r

′
2−ã. Setting then

σ = γ ∗ r′2 − ã we get that (R, σ) is a valid Schnorr signature for the public key Y ′ = Ȳ r′2 , which
is signed by the delegated authority Del.

Correct threshold scheme execution. To generate the DAA signature, after following the steps
outlined above, M will also follow the same procedure described in 5.6, to prove knowledge of a
(threshold) Schnorr signature z = (R, σ), a public key Y ′ that validates that signature and of a
signature sig = (AD, sD, eD) over that public key Y ′. The difference with the protocol described in
Section 5.6 is that the signature sig will be produced by Del and not IDAA. As mentioned above,

CONNECT D4.2 PU – Public Page 99

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

M will have to follow the procedure described previously to showcase that their DAA credential,
includes a commitment to the secret key of Del, as to prove that Y ′ is set by a certified entity.

At this point, M will have generated a proof proof1,2 =

(¯PKD,
¯̂

PKD, B1, D1, ĀD, Ȳ
′, K,R, Q̄, R̄, π1,2), showing knowledge of a signature (AD, sD, eD)

over a point Y ′ = Ȳ ′r′2 , for some known to M scalar r′2. Additionally, proof1, showcase knowledge
of a point Q = Q̄a′1 = qskD , where skD the secret key that was used to calculate the signature
(AD, sD, eD).

What remains know is for M to prove knowledge of a DAA credential, which includes Q, and of
a Schnorr signature, valid under Y ′. Recall that, cred = (Y, (A, e)), where A = (g0QY)1/(skI+e),
where skI the DAA issuer’s secret key, with corresponding public key PKI = gskI2 . M will blind

the signature (A, e) by choosing a2
$←− Zp setting Ā = Aa1a2 , Ȳ = Y a1 (note that a1 is the

random scalar that was used to blind Q, i.e., to create the commitment Q̄ = Qa1). M will also set
D2 = (g0h

skDAA)a1 and B2 = Da2Ȳ a2Q̄a2Ā−e (= ĀskI). Finally, M will calculate a signature proof
of knowledge (SPK) π3, over a message m as follows (recall that will set a′1 = 1/a1),

π3 = SPK{(a′1, a2, e, skDAA) :

B2 = (D2 · Ȳ · Q̄)a2Ā−e ∧ g0 = D
a′1
2 · h−skDAA}(m)

(5.8)

Let proof3 = (Ā, Ȳ , Q̄,D2, B2, π3). Note that in the above construction, there is no relationship
between Y (the threshold signature group public key set by IDAA, corresponding to the original
threshold value t) and Y ′ (the threshold signature group public key corresponding to the updated
threshold t′). This means that Del could create a (sk′, Y ′) key pair independent of the threshold
signature protocol and (coordinating with M), bypass the need to execute the threshold signature
protocol. To avoid this issue, M will prove that Y ′ is correctly constructed by Del. Recall that,
Y ′ = Y gs

′
for some randomly sampled by Del s′, which Del will send to M (together with it’s

signature over Y ′). M will check that indeed Y ′ is correctly calculated and prove knowledge of a
value s′ so that the above equation holds. Note that Ȳ = Y a1 and that Ȳ ′ = Y ′r2 .

To that end, M will generate the following zero-knowledge proof-of-knowledge,

π4 = SPK{(a′1, r′2, s′) : 1G1 = Ȳ ′r′2 · Ȳ −a′1g−s′}(m) (5.9)

We can construct the final DAA Signature as

sigDAA = (proof1,2, proof3, π4) =

(¯PKD,
¯̂

PKD, B1, D1, B2, D2, ĀD, Ā, Ȳ , Ȳ ′, K, Q̄, R, R̄, π1,2, π3, π4)
(5.10)

At a high level, to validate the DAA signature the verifier needs to verify each included proof,
i.e., proof1, proof2 and π4. Concretely, the steps to verify a DAA signature supporting threshold
update are the following,

1. ĥ(ĀD, ¯PKD) = ĥ(B1, g2)

2. Check that ¯PKD ̸= 1G2 , that ˆ̄PKD ̸= 1G2 and that ĥ(Q̄, g2) = ĥ(q, ˆPKD).

3. ĥ(Ā, PKI) = ĥ(B2, g2)

4. Calculate c = H(R,PKI ,m) and verify the SPKs π1,2, π3 and π4

CONNECT D4.2 PU – Public Page 100

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Analyses. We will give here an outline of the fact that the above protocol is proof of knowledge.
The construction of our sigDAA is equivalent To the following; set,

sigDAA = (¯PKD,
¯̂

PKD, B1, D1, B2, D2, ĀD, Ā, Ȳ , Ȳ ′, K, Q̄, R, R̄, π)

,

where π the following zero-knowledge proof-of-knowledge;

π = SPK{
(r4, e, r

′
4, r

′
1, s

′, a′1, a2, γ, skDAA, r
′
2, s, ã) :

B1 = D1Ȳ ′Kh−r4 ∧ 1G1 = Kr1Āeh−r′4 ∧ g0 = Dr′

1 h
−s′

∧R = R̄r′2g−ã ∧ R̄Ȳ ′c = gγ

∧B2 = (D2 · Ȳ · Q̄)
a2Ā−e ∧ g0 = D

a′1
2 · h−skDAA

∧ ¯PKD =
¯̂

PK
a′1
D ∧

¯̂
PKD = ˆPK

r′1
D

∧ 1G1 = Ȳ r′2Ȳ −a′1g−s}

(5.11)

Run the extractor of π to get the values (r4, e, r
′
4, r

′
1, s

′, a′1, a2, γ, skDAA, r
′
2, s, ã) so that all equa-

tions of π hold. From the first 3 equations of π, using the analyses of Section 5.7.2 we can get
signature (AD, sD, eD) valid under the public key PKD (known by M) committed in ¯PKD. Given
that ¯PKD ̸= 1G2 and that ˆ̄PKD ̸= 1G2 we get that a′1, r

′
1 ̸= 0. Using the aforementioned analyses

we get that PKD = ¯PK
1/r′1
D = g

δ/r′1
2 , where δ the discrete log of ¯PKD in the basis of g2. Set-

ting skD = δ/r′1 and Q = Q̄a′1 , we know from the analyses of the proof π1,2 of this Section, that
Q = qskD , where skD the secret key that generated the signature (AD, sD, eD). Using the extrac-
tor from the analyses of π1,2 we know that the signature (AD, sD, eD) is over a point Y ′, committed
to Ȳ ′, so that Y ′ = Ȳ r′2 . Additionally, that extractor returns a Schnorr signature (R, σ = γ ∗r′2− ã),
valid under the public key Y ′. From the sixth and seventh equation of π, as well as the fact that
ĥ(Ā, PKI) = ĥ(B2, g2), we get that ĀskI+e = D2Ȳ Q̄ => (Āa′1)skI+e = g0h

skDAAQ̄a′1Ȳ a′1 . From
that we can conclude that M , knows a signature (A, e), issued by IDAA over their DAA secret key
skDAA, Del’s secret key skD and the threshold signature group public key Y = Ȳ a′1 . From the
last equation of π we can get that Y ′ = Y gs, meaning that the calculation of the updated public
key is done correctly.

CONNECT D4.2 PU – Public Page 101

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 6

Securing the Edge Components of
CONNECT

While we outlined the secure container management in Chapter 3, we now provide additional
design details for the required services. This includes secure migration and update for TEE-
enabled workloads as well as some required infrastructure services that are required for this
design.

6.1 High-level Architecture for Secure Migration of Intel SGX
and Gramine

One goal of the CONNECT project is to enable secure upgrade and migration of security-critical
workloads:

Upgrade: Software is constantly evolving to add features and reduce potential bugs. To allow
software innovation and improvement, it is essential that hardware-protected services can
be updated securely.

Migration: To increase availability of services, it is important that services can be migrated. This
can happen between different ECUs in the vehicle as well as from the vehicle to the edge.

We now outline how we plan to achieve these objectives. The heart of our design is a TMC as
a Service that we will detail in section 6.2.1. Before detailing design elements in the subsequent
chapters, we will first outline the high-level architecture described in Figure 6.1. In the sequel,
we focus on migration. From a high-level perspective, secure upgrade is a migration within one
machine from a TEE with one software version to another TEE with a later software version.
The depicted architecture includes a source and a target machine. The source machine initially
hosts a TEE with the Gramine LibraryOS and a given application (both may include some state).
The goal is to create a replica of this TEE on a target machine while ensuring that integrity and
confidentiality is protected while the TEE is migrated from the source to the target machine.

CONNECT D4.2 PU – Public Page 102

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Machine 1 - Source Machine 2 - Target

Host

Applica�on

Original process

SGX
enclave

Gramine

App
state

Gramine
state

① checkpoint()

Applica�on

Migrated process

SGX
enclave

Gramine

App
state

Gramine
state③

④

Host

Encrypted
state

②

Host state Host state

HW pla�orm HW pla�orm SGX key

Key helper

Gramine

Key
retrieval

applica�on

Encrypted
key

⑤

⑦⑧

⑥

TMC
service

Figure 6.1: High-level Architecture for Migrating intel SGX Enclaves and the Gramine
LibraryOS.

6.1.1 Security Objectives

Both procedures, upgrade and migration, share a common set of security objectives that we will
later explore further in Section 6.3:

Secure Cloning a TEE from Source to Target: The main objective is to migrate/upgrade a ser-
vice, i.e. given a service within a TEE that runs a certain software version with a given state
on a given host, the same service with the same state shall be established either using a
new software version (upgrade) or on a new host (migrate). Services may maintain a state
that needs to be preserved during upgrade/migration. An example is the database of valid
keys in a cryptographic key-store. Preservation means that a valid state is transitioned from
one software version to the subsequent one (when upgrading) or migrating the state from
one node to another (when migrating).

Integrity and Confidentiality while Cloning: The TEE (e.g. Intel SGX) ensures that the state
is hardware-protected while in use. To maintain integrity and confidentiality, it is essential
that the state is directly migrated from one TEE to another while protecting integrity and
confidentiality. In practice, this means that the state must be encrypted and integrity pro-
tected before exporting it and the integrity must be validated while decrypting in the target
TEE.

Permanent Disabling of the Source TEE: If a service is to be migrated or upgraded, a common
security requirement is to permanently disable the source service.1 E.g. if a key manage-
ment service includes revocation, then it is important that there is only one single ground
truth of what keys are still valid. In this scenario, one needs to prevent that an attacker can
force a ”switch back” to the original source service that may still lists some keys as valid
while they have been revoked on the new cloned service. We address this requirement
by devising a method to guarantee that the original service is permanently and irrevocably
disabled in Section 6.3.3.

1Disabling the source is alwas required for upgrade (since the outdated TEE should not continue to operate).
However, for increasing capacity, there are cases where cloning a TEE is desirable. In this scenario the original TEE
as well as a series of clones all continue to exist.

CONNECT D4.2 PU – Public Page 103

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Rollback Protection: An important attack (in particular against secure upgrade) is a so-called
rollback. This is similar to switching back to the source TEE. This means that an adver-
sary can use migration or upgrade to actually downgrade the software version to an earlier
release that may contain known but unfixed vulnerabilities. For security-critical services,
rollback protection is commonly required.

Singleton guarantees: For some services, there needs to be a “single source of truth”. One
example is key revocation - once a key has been revoked, there must not be claims that it is
still valid. One attack against such services is to create unauthorised siblings. E.g. backup
a revocation services, let the revocation happen, and relay queries to the unauthorised copy
that still claims that the key is valid. To mitigate such attacks, it important to enable “single-
ton services” where the infrastructure guarantees that at most one service is authorised at
any point in time.

6.1.2 High-level Flow for TEE Migration/Update

We now outline the high-level flow for migration/upgrade. Note that this flow only implements
confidentiality and integrity, it does not yet implement the other desired security guarantees like
rollback protection, guaranteed disablement of the source service, and prevention of multiple
instances. We will elaborate how to add these security guarantees in Section 6.3. The high-
level flow of migration in our architecture works as follows (the numbers correspond to the circled
numbers in Figure 6.1):

1. To start the migration process, the application developer triggers the checkpoint() system
call in the original process and Gramine receives this system call and initiates the export of
its state.

2. This application and Gramine collect and dump their state in into a single blob that is ready for
export. Note that depending on the programming language used, this may require explicit
support of the used applications.

3. The enclave now encrypts the blob with a key available to the target enclave. One option is to
use the MRsigner key of SGX. In this case, any enclave signed by the same signer can de-
crypt the blob. Another alternative is to use a specific KBS to ensure that only the desired
target machine has the key to decrypt. In this scenario, an ephemeral symmetric key is
provided by the KBS detailed in Section 6.2.2. This key is shared between source and tar-
get, the state is encrypted and authenticated. This can be done by generating a message
authentication code (MAC) and encrypting or by using an authenticating encryption mod-
e/scheme. Gramine then dumps the checkpoint blob into a file specified as an argument to
checkpoint(). The KBS (not shown here) should provision the key to the original Gramine
enclave and later to the migrated Gramine enclave, and then destroy this ephemeral key. A
public transaction handle can be provided by the KBS to identify a given key that is to be
used in a given transaction.

4. The encrypted state is made available on the target Machine 2.

5. To obtain the key to decrypt, there are again two options. If the MRsigner key was used to
encrypt, then this key is available to any TEE signed by the same signer. If the KBS was
used, the system must first start the “key helper” Gramine SGX enclave (4) that manages

CONNECT D4.2 PU – Public Page 104

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

the import.The purpose of this helper enclave is to establish a connection to the KBS, obtain
the ephemeral key, encrypt this key using the SGX-platform-specific key and write it as a
separate file (5) (Notice that without this double-encryption, the ephemeral key would be
stored on the host of Machine 2 in plaintext and could be stolen by a malicious host).

6. The developer starts Gramine in a special “restore” mode, specifying as two command-line ar-
guments: the file that contains the encrypted state and the file that contains the ephemeral
key.

7. Upon SGX enclave initialisation, Gramine first decrypts the ephemeral key file using the SGX-
platform-specific key, and then decrypts the encrypted-state file. Finally, Gramine restores
the decrypted checkpoint.

8. All Gramine and application data is ready for use, and Gramine passes control to the applica-
tion, to run from the location right after checkpoint() (8).

Note that the service outlined preserves integrity and confidentiality but does not guarantee migra-
tion (i.e. the original service is not reliably disabled and may continue to run), rollback-protection,
or guarantee that only one clone is created. We will investigate corresponding extensions in
Section 6.3.

6.2 Required Infrastructure Services

Our goal is to provide robust security guarantees that are aligned with the Intel SGX trust model:
Using Intel SGX, only hardware-protected software that is running inside a verified Intel SGX en-
clave is trusted by default. Neither the operating system nor any other software on the machine
is considered trusted. By default, an enclave can be dumped (e.g. to allow hibernation). In addi-
tion, the enclave can be restored multiple times. As a consequence, Intel SGX does not provide
hardware guarantees sufficient to prevent unauthorised clones or rollback after an upgrade.

We now outline two infrastructure services that are required for the security of TEE migration. The
Trusted Monotonic Counter service guarantees that counters can be authenticated, increased but
not decreased. We will argue in Section 6.3 that these services are sufficient to implement the
desired security guarantees. Another alternative can be Blockchain-based services.

6.2.1 Trusted Monotonic Counters as a Service (TMCaaS)

We now describe the TMC as a Service design. The goal of this service is to provide a “global
single source of truth” that can be used by an enclave. For upgrade on a single machine, this
can be implemented locally [41]. For a distributed system with multiple machines - such as
vehicles and the edge - a dedicated service that can be centralized or distributed will be required
to provide this ”ground truth”. We now outline our high-level design. An alternative proposal has
been published in [38].

6.2.1.1 Introduction

Trusted monotonic counter services are a security primitive that essentially provides ways to en-
sure that a counter has a deterministic behaviour (i.e., increase) and cannot be reset or rolled

CONNECT D4.2 PU – Public Page 105

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

back. In the context of confidential computing, this is crucial for preventing replay attacks and en-
suring the integrity and uniqueness of operations in security-sensitive applications. A monotonic
counter is designed to be tamper-resistant; it should be infeasible for an adversary to manipulate
the counter without detection. Monotonic counters can be used in a variety of scenarios, such as
ensuring the integrity of secure storage, preventing replay attacks by associating a counter with a
data object, or restricting the usage of a feature (e.g., application migration) to a certain number
of times. To increase their robustness and fault-tolerance properties, trusted monotonic counter
services are often designed as distributed services that leverage secure hardware modules (e.g.,
Intel SGX). In this way, the counter operations are isolated inside a secure environment (e.g.,
secure enclave) that cannot be tampered and their state is securely replicated across different
nodes inside a trusted network, where the communication is performed via secure, encrypted
channels (e.g., TLS). Overall, such counters are essential for maintaining the integrity and trust-
worthiness of a system, especially in environments where security is important.

6.2.1.2 Motivation

The reasoning behind our project’s need for a Trusted Monotonic Counter Service is twofold; first,
we have to ensure that an applications running inside an Intel SGX enclave is migrated only once
and, second, we must guarantee a secure upgrade process and prevent rollback attacks.

Precisely, to ensure that a service is migrated only once, a robust migration process must be
established. This process should include a unique identifier (i.e., a unique counter value) asso-
ciated with each migration operation, which is recorded in a secure database. Thus, the system
can check against this database before initiating any migration task to guarantee that the service
has not been previously migrated. This approach prevents duplicate migrations and ensures that
each service is migrated exactly once.

Additionally, to guarantee a secure upgrade process and prevent rollback attacks, the system
must ensure that once an upgrade is applied, it cannot be reverted to a previous, potentially less
secure version. This can be achieved by using trusted monotonic counters that increment with
each update. These counters provide a way to verify that the system state is the expected has
not been rolled back. During the upgrade process, the system should verify the integrity and au-
thenticity of the update. After a successful upgrade, the monotonic counter can be incremented,
and the new version number should be securely stored. If a rollback attempt is detected, the sys-
tem can compare the current counter value with the stored version number to detect or prevent
the rollback.

6.2.1.3 Background - Microsoft Confidential Consortium Framework (CCF)

To facilitate the development of our Trusted Monotonic Counter Service, we choose to use Mi-
crosoft’s Confidential Consortium Framework [33]. Microsoft’s Confidential Consortium Frame-
work (CCF) is an open-source framework designed to enable the creation of applications that
require a high degree of trust and data confidentiality. CCF is suited for scenarios that involve
multi-party governance, integrity protection, and programmable confidentiality, even in situations
where the datacenter or host operator may be compromised. CCF leverages Trusted Execution
Environments (TEEs). TEEs ensure that the code and data loaded inside them are protected
with respect to confidentiality and integrity. CCF uses TEEs to create a decentralised trust model
similar but with the added benefit of maintaining data confidentiality through secure, centralized

CONNECT D4.2 PU – Public Page 106

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

computation. The framework provides a simple programming model based on a key-value store.
It is designed as a distributed system and uses a consensus protocol that provides Crash Fault
Tolerance (CFT) [34] and is based on Raft [40]. This allows for the creation of flexible policies
that enforce access control and other governance features [35]. CCF is designed to be efficient,
extensible and easy-to-use. It is particularly useful for building enterprise-grade applications that
require a common source of truth and decentralized trust, such as financial services, supply chain
management, and more.

6.2.1.4 Trusted Monotonic Counter Design

We design our Trusted Monotonic Counter Service on top of Microsoft’s Confidential Consortium
Framework (CCF). The CCF network is composed by a set of nodes, called member nodes. To
set up a CCF network, we must initialise it with at least one active member (initiator). After this
point, more members can join the network. This is typically done through proposals, which are
formal requests for changes that are voted on by the consortium members. Each CCF node is
identified by a public-key certificate, known as the Node Identity Certificate, which is endorsed by
an attestation report. This certificate is used to authenticate the node when it joins the network.
After the finalization of the member joining process, the CCF network can become public; a
process that is also performed through a separate proposal.

Once the CCF network becomes public, clients can access the network by establishing TLS
connections. The service certificate, which is shared by all nodes trusted to join the network, is
used as the root of trust for server authentication. In our Trusted Monotonic Counter Service,
we enhance this process so that the CCF network attests the clients (mutual attestation) before
adding their credentials in the trusted users list. Beyond this point, the clients can access the
endpoints of the service and retrieve or check their desired counter value or instruct the service
to perform an atomic increment.

Importantly, the service logic of each node is running inside a TEE, which is Intel SGX in our case.
Our service supports multiple counters. Each counter has its own ID and is securely stored a key-
value pair, where the key is the counter ID and the value is the actual counter value. The state of
the counters is replicated across all member nodes to improve fault-tolerance. Currently, in our
design, we have not integrate the failure-recovery process as we consider a long-running service
with the majority of nodes available. However, CCF provides such recovery mechanisms [36]
through its ledger.

For most of the above operations, the CCF member nodes have to vote for the proposals made
in order to perform any action. For simplicity, we currently require the majority of nodes to vote
for a proposal before proceeding with the appropriate operation (e.g., add a client to the trusted
users list).

6.2.1.5 Trusted Monotonic Counter Implementation Details

The Trusted Monotonic Counter Service is built using the Microsoft CCF framework. It leverages
Intel SGX as its backend Trusted Execution Environment.

Each member node has its own self-signed public-key certificate. The initiator node bootstraps
the network and waits for other nodes to join. It exposes endpoints where the nodes can send
their information (e.g., public key, certificate etc.) and after being attested by the initiator that they
run the correct and expected version of the TMC logic, they can be admitted in the network. This

CONNECT D4.2 PU – Public Page 107

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

operation is seamlessly provided by CCF using the OpenEnclave API. After the member nodes
have joined the network, the initiator instructs the service to go public through a specific internal
endpoint. Once this is successfully done, the clients can reach the TMC endpoints.

We currently expose a public endpoint for clients to send their information. After receiving this
information, the CCF member nodes attest the client(s). In our case, the clients are Gramine-
SGX applications. After a successful attestation, the client can be added in the trusted users list
and then access the private endpoints that allow for TMC manipulation.

The proposals are constructed in a json format. Similarly structured are the votes, as instructed
by the CCF framework.

As stated above, our current logic for the constitution (governance) is not sophisticated. We
require the majority of the member nodes to vote for a proposal or transaction before it is applied.

Our Trusted Monotonic Counter Service exposes the following interfaces in its respective public
endpoints:

1. TMC init())→ id : Creates a new counter and returns its id.

2. TMC get(id)→ cnt val : Retrieves the current counter value.

3. TMC inc(id)→ cnt val : Returns the current counter value and triggers an atomic (transac-
tional) increment.

4. TMC check and inc(id, count)→ cnt val/false : If cnt val matches the current counter
value, the counter value is returned, and an atomic (transactional) counter increment is
triggered, otherwise an error is returned and no operation is performed.

5. TMC destroy(id)→ true/false : Destroys the counter with id and returns true or returns
false if a counter with this id does not exist.

Using these endpoints and functionalities, we can provide solutions about the uniqueness of a
Gramine-SGX app migration and roll-back protection provided that our TMC service is up and
running.

6.2.2 Key Broker Service (KBS)

The goal of the key broker service is to “pair” a source enclave and key retrieval application (as
the target of the migration) and to provision an ephemeral symmetric key to both enclaves. This
will require the following steps to be implemented:

1. The originating enclave establishes a secure channel to the KBS and register its trust re-
quirements for the target of the migration. This can include integrity requirements on the
target key retrieval application or on the target enclave (e.g. version information). It may
also specify the crypto to be used for encrypting/authenticating the state. In return, it will
obtain a suitable ephemeral symmetric key and a non-confidential key/transaction handle.

2. We assume that the encrypted/authenticated state and the transaction handle is transferred
to the target machine and input to the key retrieval service.

3. The target key retrieval application establishes a secure connection to the KBS and queries
for the key while providing the transaction handle.

CONNECT D4.2 PU – Public Page 108

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

4. The KBS verifies that the target key retrieval application satisfies the trust requirements of
the source enclave. If not, it declines the request.

5. The KBS provides the ephemeral key.

Overall, this ensures that (a) source and target share a common ephemeral key and (b) only
authorised targets can obtain access to the key.

6.3 Implementing TEE Security Guarantees

In general, we can employ the trusted monotonic counter service to ensure that an action or a
service is started or performed only once (e.g., during a migration). In a nutshell, for our project,
the term singleton highlights that at most one Gramine instance is launched. The singleton
concept is used both for upgrade (Section 6.3.2) and migration (Section 6.3.3), making sure the
”old” Gramine instance is no longer active. Either the sealing of Intel SGX or else the Key Broker
Service can be used to constrain the target machine of a migration (Section 6.3.3).

6.3.1 Implementing Singleton Services using a Trusted Monotonic
Counter (TMC) Service

Security Requirements: We assume that a Service Control Authority defines and controls a
service. The goal of the protocol is to ensure that a service can only be started at most once.
I.e. a new instance of the service can only be started from the state that the earlier copy has
exported during exit.2

Protocol Outline and Extensions: The core idea of the singleton guarantee is to define a
counter that allows a service to (a) verify whether this is the first run (globally) or else (b) whether
the state of the counter corresponds to the counter value stored in its saved state (i.e. while the
service was asleep no other service was started). The protocol depicted in Figure 6.2 has three
phases:

In the first phase ”Register new service”, the authority controlling the global set of authorized ser-
vices (usually the OEM) defines a globally unique identifier for the service and other information
that uniquely identifies a given service. Given this ID, we assume that a specific service can be
identified (i.e. it may also include a cryptographic hash). Both are included in a unique service
definition Service− id. It then creates a new counter with a unique counter− id and signs a ser-
vice definition statement srv = sign(Service− id, counter − id, ”0”) that associates the service
with a specific counter that is initially ”0”.

In the second phase, ”Service start”, the service is to be started given a service definition and,
optionally, a saved state from a prior execution. The service then retrieves the expected counter
value from the sealed state (or ”0” for the initial start without state). It then invokes ”check and
increase” for the counter. If this fails, the service exits. Else, the service is launched. We assume
that all authorized software includes this check - starting from the first release.

2Note that this focuses on stateful services; we did not investigate stateless services.

CONNECT D4.2 PU – Public Page 109

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

TMC

Seal state and
Instance Counter ctr'
(with ctr'=ctr+1)

STOP/SIGINT

Service Control
Authority

Servce ID: srv_{id}

counter-id = TMC_init()

srv=sign{Service-id, counter-id, "0")

Service Start

Servce
Shutdown

TMC_check_and_inc(id,ctr)

ctr' (:=ctr+1 or false)

Retrieve sealed state
including counter "ctr"
of Instance

start(sealed_sate)

Register new
Service

TEE with
Service

if false: exit()
else launch service

terminated()

srv=sign{Service-id, counter-id, ctr)
{ctr==0 at first start}

Figure 6.2: Using TMCaaS to prevent multiple copies of a Singleton Service.

The third phase is the controlled Service Shutdown. When the service manager signals that
a service shall shutdown (e.g. by sending SIGINT), its state is sealed including the currently
valid instance counter, which is ctr + 1 and corresponds to the state of the global counter - thus
enabling a restart.

Security Assumptions and Security Argument: We assume that the protocol is correctly
implemented and that all the required keys are correctly distributed. We also assume that all
authorised services (with a signed manifest) include and execute the specified singleton check
before starting the core service. For a given Service ID Service − ID, the TEE only launches
software where (a) the manifest was signed by the authority and (b) that includes the specified
checks. We now consider two cases: For the first run (without a prior saved state), the service
only starts if the counter is still 0, else it exits. We can show the singleton property by induction:
Before the service starts the monotonic counter is increased and the internal state is updated.
Any parallel start will fail since any saved state still has the outdated counter included that will not
pass the equality check with the monotonic counter. The only way to obtain a new state on disk
that contains the increased counter is to then save the state of the single service that was started
first and that increased the counter. Note that the software is required to terminate after saving

CONNECT D4.2 PU – Public Page 110

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

its state to avoid duplicates. This saved image can then be used to later re-start the singleton
service.

Note that while the service is running, the central maintained counter is higher than any saved
state. I.e. whenever someone attempts to launch a service, the counter (in the state) should be
lower than the central counter and thus the service should exit.

6.3.2 Guaranteeing Secure Upgrade and Preventing Rollback Attacks

Security Requirements: We assume that a Software Release Authority (SRA) such as an
OEM authorises a given software version to be executed within a TEE. The SRA may also release
subsequent updates. The goal of this protocol is to ensure that once a new software update has
been released, then it is impossible to successfully launch a TEE and execute an outdated version
of a given service/software.

Protocol Outline and Extensions: The core idea of anti-rollback is as follows: Whenever a
new software version is released, a well-known counter corresponding to this software package
is increased. This counter is then used by the TEE to check that its software is not outdated (by
checking that the counter value stored in its software is equal to the counter value published by
the Trusted Monotonic Counter Service). The protocol depicted in Figure 6.3 has three phases:

In the first phase ”Initial Software Release”, the authority controlling software releases (usually to
OEM) defines a globally unique identifier for the software and a version to uniquely identify a given
software release. Given this ID, we assume that a specific package can be verified (i.e. it may
also include a cryptographic hash). Both are included in a unique software identifier SW −id. We
assume that subsequent releases are strictly ordered. It then creates a new counter with a unique
counter− id and signs a package release statement pkg = sign(SW − id, counter− id, ”0”) that
associates the software with a specific counter that is initially ”0”.

In the second phase (optional), the Software Release Authority (SRA) authorises a new software
release by (a) increasing the associated counter to a new value ctr′ and then signing an updated
package release statement pkg′ = sign(SW − id′, counter − id, ctr′) for the updated counter
value.

The third phase is the actual Launching the Service within a TEE: We assume that all authorized
software includes this check - starting from the first release. When the TEE starts executing, it
will first check that the software is one of the binaries authorised to run at all (by verifying software
integrity via the signed manifest). The first steps that all authorised software releases will do is
to retrieve the signed package release statement pkg for itself and verifies its signature. This
statement contains a counter − id. The software then retrieves the latest value of this counter.
If the value is higher than the counter in the statement, then the current software is outdated
and the TEE exits. If the counter in the statement is equal to the up-to-date counter value in the
package info, then it continues. This process ensures that the latest software version is running
and prevents rollback attack as it checks the tamper-proof counter value of the trusted monotonic
counter service.

Security Assumptions and Security Argument: We assume that the protocol is correctly im-
plemented and that all the key-pairs are correctly distributed. We also assume that all authorized
software packages (with a signed manifest) include and execute the specified up-to-date check

CONNECT D4.2 PU – Public Page 111

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

TMC TEESoftware Release
Authority

SW Identifier and Software
Version(name, ver)

counter-id = mtc_init()

pkg=sign,(SW-id, counter-id, "0")

Software
Update

Launching
the Service

New SW Version
SW-id'

ctr'= mtc_inc(counter-id)

pkg'=sign(SW-id', counter-id, ctr')

Package-info
(may be outdated): pkg / pkg'

mtc_get(counter-id)

ctr''
if (ctr!=ctr''?)
then exit ()
else: launch service

Verify signature
and obtain counter-id
and ctr from package-info

Initial SW
Release

Update software and
store latest pkg'

Figure 6.3: Using TMCaaS to Prevent Rollback Attacks.

before starting the core service. For a given Software ID SW − ID, the TEE only launches
software where (a) the manifest was signed by the authority and (b) that includes the specified
checks. The authority ensures that each new release contains a signed counter never used be-
fore. If we now assume a TEE is successfully launched (i.e. the software manifest was signed and
thus includes the specified checks), then the checks ensure that the latest counter is retrieved. If
we now assume that a later release exists, then the TEE will exit without continuing the execute
the desired service.

6.3.3 Constraining the Target TEE of the Migration of a Service

Migration of a Service refers to the process of moving a running service from one machine
(source) to another (target). As described in Section 6.2.2, we cannot rely only on the spe-
cial SGX sealing keys (i.e., sgx mrsigner and sgx mrenclave) to guarantee the desired security
properties of migration. sgx mrenclave can guarantee that the service can only be unsealed and
read by the same enclave on the same machine and sgx mrenclave can guarantee that the state
can only be unsealed by a enclave where the manifest is is signed by the same signer. Neither

CONNECT D4.2 PU – Public Page 112

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

can guarantee that the state can only be read by a specific enclave on a specific machine.

Therefore, we decided to introduce a dedicated Key Manager to enable the decryption of the
encrypted state only by an authorised enclave. However, apart from the secure key management
for the migration, we have to make sure that the migrated enclave is launched only once and
that the latest enclave version is launched. One goal is to ensure that the original service is
permanently disabled during migration. We aim to achieve this by (a) using the singleton service
to ensure that the original service can no longer be started once the new service is up and running
and (b) including the target machine into the state before dumping it and then checking that the
restore-and-restart happened on the correct target machine.

We outline the full integration of all services into a migration in Figure 6.1 and provide a step-by-
step description in Section 6.1.2.

CONNECT D4.2 PU – Public Page 113

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Chapter 7

Conclusion and Outlook

Deliverable D4.2 focused in the refinement and finalisation of the CONNECT Trusted Execution
Architecture as a core building block for supporting the first-of-its kind Trust Assessment Frame-
work (TAF), capturing the trust model and complex trust relationships that need to be continuously
assessed towards the materialisation of a trusted CCAM continuum. Towards this direction, this
deliverable extended the overarching trusted computing base to also capture the security require-
ments of all information and functional assets comprising the MEC layer as an additional opera-
tional plane for supporting the provision of safety-critical CCAM services. This transformation of
the stand-alone vehicle domain into a safe and security solution distributed from vehicles to MEC
and Cloud facilities, is a critical enabler for Day 2 automotive operations (with a high degree of
efficiency and automation [12]) providing vehicles seamless access to computational capabilities
by deploying services at both the far edge and edge layers of the CCAM continuum, thus, also
facilitating the vision of task offloading. However, this updated operational model introduces new
attack vectors, necessitating sufficient safeguards to assess and establish trust in both vehicles
and the virtualised infrastructure where services are deployed.

Hence, a core trust pillar for this extension lies the integration of a TEE into the MEC, safeguard-
ing all operations, including continuous and evidence-based trust assessment of any CCAM actor
or data object. Towards this direction, D4.2 provides the final and refined description of CON-
NECT ’s overarching Trusted Computing Base considering also the provision of the necessary
mechanisms for ensuring the secure lifecycle management of any CCAM (and beyond) ser-
vice deployed on the MEC. This does not only include the runtime attestation of the service itself
(enacting upon the previously mentioned attestation procedures) but also captures the integrity
and resilience of all the MEC infrastructural elements as well as the SW components running on
them, and especially those facilitating the network orchestration plane. Attestation of a virtual-
ized infrastructure element (i.e., measurement and verification) leads to the ability to establish
information security assurance. This, in turn, constitutes another core trust source based
on which the vehicle can assess the level of trust it can put on the MEC to protect its
information and functional assets. All these capabilities set the scene for the detailed exper-
imentation and evaluation activities of all these trust extensions in the context of the envisioned
use cases on Intersection Movement Assistance, Collaborative Cruise Control and Slow-Moving
Traffic Detection (WP6).

The first version of these advanced trust extensions is also presented in this deliverable compris-
ing CONNECT ’s crypto agility layer focusing mainly on safeguarding the operation of the vehicle.
More specifically, D4.2 provides the detailed description of a new set of trusted computing capa-
bilities towards the runtime integrity verification of a component (such as an ECU)

CONNECT D4.2 PU – Public Page 114

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

through abstractions, called policy-restricted attestation keys, that allow for the verification of the
component’s integrity correctness in a zero-knowledge manner; i.e., without disclosing any details
on the actual configuration or operational profile of the target device. This functionality, together
with those libraries offered for secure software upgrade and/or state migration (as reaction poli-
cies to the change of a node’s trust level), comprise CONNECT ’s TCB capabilities for supporting
the operations of the Trust Assessment Framework: All attestation attributes constitute one of the
trustworthiness sources based on which the TAF (as the core WP3 artefact) calculates the Actual
Trust Level (ATL) of a (SW and/or HW) element which leads to the trust state characterisation of
the target node.

These attestation attributes are then shared (as trustworthiness evidence/claims) with external
entities in a secure and privacy-preserving manner so as to avoid the linkability and fingerprint-
ing of the vehicle itself - which in turn might lead to further implementation disclosure attacks.
This high degree of privacy is achieved through CONNECT ’s new Threshold Anonymous Direct
Anonymous Attestation (DAA) scheme that allows the construction of anonymised signatures as
proof-of-conformance to those trust properties of interest; i.e., device integrity, communication
integrity, safety, etc. Without, however, disclosing any of the details of the runtime configuration
and behavioural profiles of any of the in-vehicle elements comprising the CCAM function that
is assessed. To the best of our knowledge, this is the first attempt in the literature that try to
combine the strict properties of platform authentication and integrity (offered by DAA) with the
privacy guarantees of anonymous (FROST) signatures. This allows CONNECT to ensure that
sharing of attributes related to vehicle trustworthiness do not create any privacy threats
by avoiding the disclosure of excessive or unnecessary information.

7.1 Open Questions and Next Steps for Workpackage 4

After outlining the complete security architecture for CONNECT , our focus will be on design
and implementation of key components to enable the evaluation of our architecture. The actual
design, implementation, and its evaluation will finally be documented in Deliverable D4.3. A
detailed road-map towards the consortium’s upcoming design and implementation activities is
presented in Table 7.1.

CONNECT Trust Ex-
tension

Implementation Status & Research Plan

ECU On-Boarding Pro-
tocol Implementation

Demos and detailed evaluation of the on-boarding protocols for ECUs (to be docu-
mented in the context of D6.1 [14]). Where information is available, we will use the
data structures that are typically used in an actual vehicle. Initial demos will be single
programs with the different entities running on different threads and passing protocol
messages which will be displayed as the protocol proceeds.

CONNECT D4.2 PU – Public Page 115

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Enhanced Configura-
tion Integrity Verifica-
tion (CIV)

The focus of the remaining activities are twofold: (i) Proceed with the finalisation of
the implementation of the CIV scheme and its integration with the CONNECT TAF for
providing one of the trust sources based on which data-centric and node-centric trust
quantification can be performed, and (ii) Extension of the design to also capture the
security assurances needed for attesting not only the far-edge (Vehicle) but also all
edge (MEC) information and functional assets. For the former, particular emphasis will
be given on the introduction of advanced tracing capabilities (exposed through CON-
NECT ’s Hardened- and Softened-TDIs (Section 2.1)) allowing for the runtime moni-
toring and measurement of the configuration profile of a target device. For the latter,
the mapping of our attestation procedures to a pre-defined scale of varying Levels of
Assurance will be finalised for establishing the trustworthiness of a particular set of com-
ponents (e.g. system or platform), according to the nature of the requested service, the
threats being considered, and the applicable policies at all levels. This clause will also
introduce new attestation primitives for asserting to the correct operational status of all
MEC elements including the network plane (i.e., Virtualised Network Functions).

Verifiable Key Restric-
tion Usage Policies

Perform a detailed security analysis on the provided properties especially as it pertains
to assuming near-zero trust assumptions for the in-vehicle network. This essentially
considers a Dolev-Yao adversarial model, which allows an adversary to monitor and
modify all interactions between a host and the underlying trusted component. This
analysis will also be coupled with an extension evaluation of the performance overhead
that this additional safeguard puts on the overall system as part of CONNECT ’s exper-
imentation activities in D6.1 [14].

Trusted Computing
Base

Design and implementation of the CONNECT trust extensions needed for supporting
the security and trust requirements of the MEC and Cloud layers considered in the
overall CCAM continuum. Essentially, this would extend our currently designed crypto
and attestation primitives (focusing on the far-edge) to also attest to the correct integrity
and operational assurance of any virtualized infrastructure onboarded for supporting
the deployment and execution of safety-critical services. This will be facilitated through
the Slow-Moving traffic Detection (SMTD) use case and the task offloading specific
scenario where all MEC/Cloud functional assets will be integrated and evaluated in the
context of D6.2. Documentation of this extended set of trust extensions (comprising
CONNECT ’s final version of its crypto agility layer) will be documented in D4.3.

Threshold Anony-
mous DAA Signature
scheme

Formal analysis of the provided security and privacy properties - especially, against
linkability and fingerprinting activities that may be performed by an attacker. This will
also be coupled with a detailed evaluation analysis so as to check the feasibility of such
advanced crypto primitives in the context of resource-constrained (in-vehicle) devices
and their footprint in the safety profile of the vehicle (execution of timely-critical automo-
tive operations). Finally, the new version of the scheme will be presented allowing for
the upgrade of the threshold number of entities that need to provide correct signature
shares without the need to change the primary DAA Key.

Selective disclosure /
Threshold signatures

Integration and wrapping of the produced threshold (anonymous) signatures (con-
structed by the TCH) within the VC/VP abstractions so as to also enable properties
including selective disclosure: VPs should hold collection of claims that the TCH can
construct disclosing only those attestation attributes needed for verifying the trust level
of an element without revelaing further information on the claims. This will be part of
the second and final version of the overall CONNECT integrated framework to be docu-
mented and evaluated in the context of D6.2.

Application State Up-
grade & Migration

Demos to validate and showcase secure migration and software update. These func-
tionalities will also be evaluated: first, as standalone components (outside the context of
the use cases) as part of the experimentation activities documented in D6.1; and, sec-
ondly, as part of the overall CONNECTservice portfolio in the context of D6.2 (consider-
ing the detailed scenarios that were fleshed out in D2.1 [12] as part of the Collaborative
Cruise Control use case).

Table 7.1: CONNECT Trust Extensions Implementation Road-Map.

CONNECT D4.2 PU – Public Page 116

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Appendix A

Design Details of the CONNECT Trusted
Execution Environment

A.1 The Intel SGX Trusted Execution Environment used in
CONNECT in Detail

Compared to D4.1, we substantially refined the documentation of the technologies underlying the
CONNECT TEE . In this appendix we document the refinements. In Section A.1 we first provide
additional details on Intel SGX. In the subsequent Section A.2 we then provide additional details
on the Gramine Library OS.

Intel SGX is a feature offered by many Intel CPUs. Its goal is to offer hardware protection for
user-space processes. It is a specific type of Trusted Execution Environment (TEE). A high-level
overview of the core functionalities of Intel SGX was provided in [10]. We now provide more
details on underpinnings and mode of operation of Intel SGX towards supporting the secure
execution of software binaries.

Connection to User Stories: The SGX protection features outlined in the next sub-
sections are required to provide a robust protection of a TEE while attestation specif-
ically is required for Story-VII.

A.1.1 Intel SGX Example Scenario: Protecting a Business application in a
Public Cloud

Consider a small business that sells pastries. This business decides to start selling their pastries
online and hires a software developer to build a website. The software developer creates a
website and decides to work with a cloud provider to host the website and handle the transactions.
The developer sends the business data to the public cloud and works with the cloud provider to
setup the environment. Finally, when everything is set up, the website starts running and serving
content to users. When users purchase pastries from the website, all transactions are handled
on the servers of the cloud provider.

After reading about a series of high-profile breaches in the used public cloud, the developer starts
to question this approach. First of all, what is the actual code executing on the cloud – what if

CONNECT D4.2 PU – Public Page 117

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

a rootkit attack replaced the website code with a malicious version? Is there a chance that the
confidential business data being leaked at the remote server? The developer would like to make
sure that she is executing the correct website application on the right platform.

To gain trust in the application execution and protect transactions’ confidentiality, the developer
decides to work with a cloud provider which provides SGX-capable servers and she starts using
an SGX-capable CPU. By using Intel SGX the developer can make sure that the website code
cannot be modified. Additionally, through leveraging special SGX cloud services, the developer
can also make sure that the original website application executes on the correct remote platform
and that only the enclave the developer created has access to the confidential business data.

Key requirements:

• The business application (the developed website) must keep its business logic protected
and confidential at all times. Protection of data in transit is guaranteed by SSL/TLS con-
nections when the developer works on the remote public-cloud server via SSH (recall that
SSH uses SSL/TLS encryption under the hood). Protection of data at rest is guaranteed
by Full Disk Encryption (FDE) implemented by the cloud provider, whereas all code is au-
tomatically encrypted on the hard disk. Finally, protection of data in use is satisfied by Intel
SGX, because the business logic runs inside the SGX enclave.

• The business application must keep customer data protected and confidential at all times.
Protection of data in transit is guaranteed by SSL/TLS connections because the developed
website requires HTTPS client connections (recall that HTTPS uses SSL/TLS encryption
under the hood). Protection of data at rest is guaranteed by Full Disk Encryption (FDE)
implemented by the cloud provider, whereas the website database, where the customer
data is stored, is automatically encrypted on the hard disk. Finally, protection of data in
use is satisfied by Intel SGX, because all processing of customer data runs inside the SGX
enclave.

• The developer must verify the trustworthiness of the running website. In particular, the
developer makes sure that the correct application (also the correct, up-to-date version of
this application) runs on the remote server, and that the remote server itself is SGX-capable
and trustworthy. These requirements are satisfied by Intel SGX remote attestation.

A.1.2 Intel SGX local attestation

Local attestation is used when two SGX enclaves reside on the same hardware platform and
want to authenticate each other. Local attestation is straight-forward because both enclaves run
on the same Intel CPU, thus they have access to the same shared secret burnt inside the CPU.

Below is a complete, though simplified, local attestation flow:

1. The target enclave (Enclave 1) wants to share a secret with the source enclave (Enclave 2),
but before entrusting secrets, it must make sure that the source enclave is what it expects
it to be.

2. The target enclave sends a plaintext message with its “target info” to the source enclave.
This target info contains the measurement of the target enclave (so that the source enclave
can verify it, if it wants to). Target info also contains additional information that the target

CONNECT D4.2 PU – Public Page 118

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

enclave wants to communicate to the source enclave (for example, which cipher suite it
wants to use for secret communication).

3. Upon receiving this “target info” message, the source enclave derives a new key that will be
used to prove it executes on a real Intel CPU. This key is derived from the CPU-specific root
key. This key is also derived from the target info (which contains the measurement of the
target enclave) and the measurement of the source enclave. Note that the newly derived
key is based on attributes from both enclaves, which will help in establishing the shared
secret later.

4. This derived key can be used to sign a “report” of a source enclave. The report is a blob that
contains the new key, the measurement of the source enclave (so that the target enclave
can verify its authenticity), and some other fields. This signed report is then sent to the
target enclave. It contains all the information required by the target enclave to produce the
same key and verify the source enclave.

5. Upon receiving the report message, the target enclave tries to derive the same key based
on its own target info and the source enclave measurement from the report. It uses the
same key derivation and same root key. Because the target enclave derives the key with
the same function, same root key from the same Intel CPU, and the same parameters, this
process must yield the exact same key that was derived at the source enclave.

6. The target enclave verifies the received report data with the newly derived key. If this veri-
fication fails, it implies that the keys derived at the source and target enclaves are different,
which in turn implies that these enclaves do not execute on the same correct Intel CPU. The
target enclave must also compare the source enclave’s measurement against the expected
one. If these two verification steps succeed, the target enclave can be sure that the source
enclave is valid and executes on the same genuine Intel CPU.

A.1.3 Intel SGX remote attestation

Remote attestation is used when two SGX enclaves residing on two different platforms want to
authenticate each other. Remote attestation is also used when a remote non-enclave user wants
to authenticate the remote SGX enclave.

Remote attestation is considerably more complex than local attestation, and involves special Intel
CPU features and the support of an internet-accessible Intel Provisioning Certification service.
Ultimately, an internet connection to this Intel service is required to fully gain trust in the remote
SGX enclave (recall that Intel is the root of trust in SGX environments).

Since remote attestation is very complicated, in the following part we give a high-level intuition
and overview how it works and omit the non-essential details.

The first important building block of SGX remote attestation is the set of architectural enclaves.
Each Intel SGX-enabled platform has these architectural enclaves, namely a Provisioning Cer-
tification Enclave and a Quoting Enclave. These enclaves are developed by Intel, designed to
be very secure, and they have hard-coded secrets shared with the “root of trust” (Intel remote
services) that can be used for attestation.

These architectural enclaves execute on the same Intel CPU as the to-be-attested application
enclave. Thus, the application enclave can perform local attestation to the architectural enclaves.

CONNECT D4.2 PU – Public Page 119

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure A.1: Two approaches to developing SGX applications: manual partitioning and
using a Library OS.

The architectural enclaves can then convert and transcribe the result of local attestation into a
remotely verifiable proof by means of secrets they have.

The purpose of the Provisioning Certification Enclave is to provision a unique signing key to the
second architectural enclave, the Quoting Enclave. The application enclave communicates only
with the Quoting Enclave and not with the Provisioning Certification Enclave. The Provisioning
Certification Enclave bootstraps a shared remote attestation secret that will be used when appli-
cation enclaves actually request SGX remote attestation.

The Quoting Enclave is used by the application enclave. The application enclave prepares a
local attestation report first, and then sends this report to the Quoting Enclave using the local
attestation mechanism. The Quoting Enclave verifies the attestation report (in particular, it verifies
that the enclave runs on the same Intel CPU). If the report is correct, the Quoting Enclave converts
it into a special quote (a special format that Intel services understand). The quote is signed by
the key obtained from the Provisioning Certification Enclave. This quote is ultimately sent to the
remote user.

To gain trust in the application enclave, the remote user receives the quote and communicates
with the Datacenter Caching Service (which may communicate with the Intel Provisioning Certi-
fication Service, to receive up-to-date information about the SGX platform) to verify the validity
of the quote. If the service replies positively, the remote user compares the application enclave’s
measurement with the one the user expects. If the result of this comparison is also positive, then
the user gains trust in the application enclave and can start sending secret data to it.

In summary, the architectural enclaves serve as proxies with some opaque logic to transform the
attestation report from the application enclave to a special remotely verifiable proof. They hide
the complexity of dealing with security versions, expiring certificates, internet connectivity to a
caching service and to the Intel Provisioning Certification Service, and so on.

A.1.4 Intel SGX component: application development tools

There are two main approaches to develop SGX applications. They are illustrated in Figure A.1.

First, the developer can choose to partition the application into the trusted and untrusted parts

CONNECT D4.2 PU – Public Page 120

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

[47, 30]. For this, a set of sensitive logic and data must be identified and extracted from the
application into the trusted SGX enclave.

In case of legacy applications, such manual partitioning may be too complex, error-prone, or
time-consuming. Therefore, the developer may choose to protect the whole application with all
its data and logic. In this approach, the whole application is moved inside the SGX enclave, and
its communication with the outside world is mediated through a thin layer of a helper Library OS.

Intel provides the Intel SGX Software Development Kit (SDK) – a framework that allows to write
manually-partitioned applications for SGX [19]. However, a significant disadvantage of program-
ming with Intel SGX SDK is that it requires a lot of manual effort to partition the application into
trusted and untrusted parts. First, the developer must manually design and program the host-to-
enclave interface. Depending on the size of the application and on the richness of this interface,
this may be time-consuming and error-prone. Second, the developer must be very careful to bring
all sensitive data and logic inside the enclave. If the developer fails to do so and leaves some
sensitive data outside, in the host application, then all security guarantees are broken. Finally,
the developer must also be careful to bring only the absolutely necessary data and logic inside
the enclave. Otherwise, if unnecessarily many computations are performed inside the enclave,
the whole application will exhibit subpar performance.

By putting the whole application inside the enclave, there is no need to perform any partitioning.
Instead, Library OS frameworks like Gramine automatically generate ECALL/OCALL interfaces
to execute only the specific logic required in the untrusted host: system calls, CPUID instructions,
etc. Thus, the untrusted code of a Library OS only deals with untrusted input/output.

At startup, the Library OS framework loads the application enclave and immediately switches
to enclave mode. Thus, the user application executes inside the enclave almost all of the time,
except for I/O requests. At run-time, the Library OS framework only performs this minimal I/O
so that the enclave can communicate with the outside world through the network, file system
interface, or other system calls.

A.2 Gramine - A Library OS for Seamless Protection of CCAM
Applications

As outlined in [10], Trusted Execution Environment is a secure area of the server that can protect
confidentiality and integrity of enclosed, loaded code and data. In other words, TEEs provide
a confined, isolated domain in which the application runs, and this domain appears completely
opaque to other software running on the same server. We now dive deeper into the details,
namely the Gramine Library OS that allows user-friendly trusted execution of Linux applications
and the Intel SGX hardware security features of Intel CPUs that allow trusted execution of user-
space processes in a so-called Enclave.

Gramine is a TEE run-time to run unmodified Linux applications on different platforms in different
environments [43, 45]. For example, Gramine can take a Redis database Linux-x86-64 based
binary and its dependent libraries, without modification or recompilation, and let it run in another
environment. The currently available and most widely used configuration is running applications
inside an Intel SGX enclave on top of the untrusted Linux kernel.

As discussed in the previous section, the Intel SGX technology provides powerful building blocks
for application development. Software developers can port their applications to Intel SGX by

CONNECT D4.2 PU – Public Page 121

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

putting only the security-critical part of the application into the Intel SGX enclave and leaving
the non-critical parts outside of the enclave. Several development kits can help ease the task of
writing such code; Intel SGX SDK and Open Enclave SDK are two prominent examples. However,
in many real-world scenarios, it is infeasible to write a new application from scratch or to port an
existing application manually.

Gramine can help ease this porting burden for developers: Gramine supports the “lift and shift”
paradigm for Linux applications, where the whole application is secured in a “push-button” ap-
proach, without source-code modification or recompilation. Instead of manually selecting a
security-critical part of the application, users can take the whole original application and run it
completely inside the Intel SGX enclave with the help of Gramine.

Gramine not only runs Linux applications out of the box, but also provides several tools and
infrastructure components for developing end-to-end protected solutions with Intel SGX:

• Support for both local and remote Intel SGX attestation, with the help of RA-TLS and Secret
Provisioning components.

• Transparent encryption and integrity protection of files; in particular, the Encrypted Files
feature allows security-critical files to be automatically encrypted and decrypted inside the
enclave.

• Optional feature of asynchronous (exitless) transitions for performance-critical applications
because transitions between the enclave and the untrusted environment can be rather slow
in Intel SGX.

• Full support of multi-process applications, by providing complete fork/clone/execve imple-
mentations.

Gramine currently supports many programming languages and frameworks, as well as many
kinds of workloads. Gramine supports C/C++, Rust, Google Go, Java, Python, R and other
languages, as well as database, AI/ML, web-server and other workloads. The typical performance
overhead observed is around 5-20% depending on the workload.

A.2.1 Gramine architecture

Gramine is a Library Operating System with modular design, depicted in Figure A.2.

Library Operating System (LibOS) means that Gramine can be thought of as a re-implementation
of a Linux kernel that is very small in size, somewhat limited in the functionality, and is tailored to
run only one application (this application can spawn multiple threads and processes, but Gramine
cannot run several distrusting applications at once as normal operating systems would do). Since
Gramine is a Library OS, Gramine itself runs as a normal user-level process on the host OS. Note
that Gramine does not use hardware-assisted virtualization and thus is not a Virtual Machine
(VM).

Gramine has modular design. In other words, unlike Linux, Gramine is not a monolithic applica-
tion. It runs as two tightly interacting components: the LibOS and the backend. Each of these two
components can be switched to another implementation, independently of the other. To allow for
switching between different backends Gramine specifies a standard API/ABI interface between
the LibOS and the backend.

CONNECT D4.2 PU – Public Page 122

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure A.2: Gramine architecture (with SGX backend).

Let’s look at the involved interfaces at each layer. First, the application running inside Gramine
must be a Linux application that uses a classic Linux system call (syscall) interface to request
functionality from the host kernel and to communicate with the outside world. Gramine currently
implements 162 most widely used syscalls out of 325 possible Linux syscalls. The unimple-
mented syscalls are mainly deprecated ones or sysadmin ones – neither of these are needed to
run real-world standalone applications that Gramine primarily targets.

Gramine intercepts application system calls and invokes their corresponding emulations in its
LibOS component. The LibOS component tries to resolve most system calls by itself, but in some
cases it must forward the request to the host OS. One example of syscalls resolved inside LibOS
itself are “user permission checks” – Gramine’s LibOS maintains metadata (shadow state) on
opened files, network connections, created threads and spawned sub-processes, and consults
this metadata on each syscall. An example of syscalls that are forwarded to the host OS are I/O
syscalls like recv() and send(), because Gramine cannot communicate with the outside world
without the help of the host platform. Note that all forwarded syscalls also keep relevant metadata
(shadow state), and LibOS verifies this metadata for consistency and integrity.

When LibOS needs to ask the host OS for some resources or functionality, the LibOS does
not simply issue a direct syscall to the host kernel. Instead, LibOS goes through one level of
indirection – the environment-specific backend. The backend is needed to “adjust” the LibOS
request to the capabilities of the underlying platform/environment. The backend is kept minimal
and stateless, and LibOS calls into it via 44 APIs (classic C functions). The backend encapsulates
all host-platform-specific and environment-specific code of Gramine in one small component that
can be easily changed. Thus, the LibOS codebase of Gramine stays the same for different host
platforms, and only the backend component is replaced.

The SGX backend is currently the primarily used backend of Gramine (the other backend is
“direct” which simply forwards all requests from application to the host and is used as a debugging
backend). Because the Intel SGX technology dictates separation of a process into trusted and
untrusted parts, Gramine’s SGX backend consists of two parts: the trusted SGX backend that
runs inside the SGX enclave, and the untrusted SGX backend that runs outside. The trusted
backend performs OCALLs to exit the enclave and to pass control to the untrusted backend;
there are 39 OCALLs in total. The untrusted backend forwards requests to the host kernel, gets
back the results from the host, and re-enters the enclave.

CONNECT D4.2 PU – Public Page 123

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

It is important to note that these 39 SGX OCALLs are the only attack surface in Gramine1. All
these OCALLs were manually inspected and verified, adding checks and validations to them, to
make sure attacks from the untrusted host are thwarted.

A.2.2 Gramine Trusted Computing Base (TCB)

Having 39 SGX OCALLs (controlled enclave entry points) between the enclave and the untrusted
host is a reasonable compromise between security, usability, and performance. It is a sufficiently
small number of interfaces to be able to manually audit and gain trust in.

The level of security of Trusted Execution Environments (TEEs) is also frequently judged by the
metric of Lines of Code in the Trusted Computing Base (TCB). The LibOS component of Gramine
is about 27,000 Lines of C Code (Gramine is written in modern C). The SGX backend has around
21,000 Lines in the trusted part and another 4,000 in untrusted part. Note that only the LibOS
component and the trusted part of SGX backend are run inside the SGX enclave, therefore the
actual Gramine TCB for is around 48,000 Lines of Code. This is considered a small TCB for a
TEE runtime that is able to run a wide range of applications.

For comparison, the codebase of the open-source version of Redis (without additional modules)
is around 144,000 lines, and the tiny configuration of the Linux kernel is at least 270,000 lines of
code.

A.2.3 Gramine component: manifest file

To run an application in an SGX enclave with Gramine, the application must be accompanied
by a manifest file – a simple plain text configuration file. Upon startup, Gramine parses the
manifest file and extracts all the necessary information about the application including its external
dependencies and Intel SGX enclave properties. The manifest is the single most important file
when porting applications inside Gramine. Ultimately, the security and correct functioning of the
application depends on how its manifest file is written.

Below is an example how the manifest can look like for a Python application (abridged for read-
ability):

l i b o s . e n t r y p o i n t = ” python ”
loader . env . LD LIBRARY PATH = ” / l i b ”
f s . mounts = [
{ path = ” / l i b ” , u r i = ” f i l e : / usr / l o c a l / l i b / Gramine ” } ,
{ type = ” tmpfs ” , path = ” / tmp ” }

]
sgx . enc lave s ize = ”1024M”
sgx . max threads = 32
sgx . t r u s t e d f i l e s = [” f i l e : / usr / l o c a l / l i b / Gramine / l i b c . so ”]

Typically, the application developer writes a manifest file as a Jinja-style template with TOML for-
matting, and Gramine provides a tool to render this template into the final manifest. The manifest
file contains not only the description of the application itself (its properties, its executables and de-
pendencies, etc.) but also the description of Gramine (its executables and dependencies). In this

1This is a slight oversimplification, because in addition to OCALLs, CPUIDs and signals are also routed through
the possibly malicious host and thus need to be carefully sanitized.

CONNECT D4.2 PU – Public Page 124

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure A.3: Features of the Gramine LibOS component.

way, the manifest anchors a specific version of the application as well as the specific version of
Gramine to be run inside the SGX enclave, for ease of deployment, attestation and maintenance.

Let us analyze the small example above. First, the manifest must specify the executable to load
and run – in this case, the Python interpreter. Next, the manifest may overwrite the required
environment variables. The manifest should also specify a subset of host-OS directories to be
mounted so that only they are visible to the enclavized application (possibly under a different
name as shown in the example – here the standard libraries are silently replaced with Gramine-
patched libraries). In addition to host-OS directories, virtual in-enclave-memory mount points
can be specified, e.g. “tmpfs” file system mounts. Next, the manifest contains SGX-architecture-
specific variables like the maximum enclave size and the maximum number of simultaneous en-
clave threads. Finally, this example shows how files to be consumed by the SGX enclave must be
marked as trusted – in this case, Gramine calculates the files’ secure hashes during build time,
appends these hashes to the manifest, and during run-time Gramine will verify that the files were
not modified.

There are several more manifest options in Gramine, to enable some additional functionality. For
a complete list, please refer to Gramine documentation at https://Gramine.readthedocs.io/
en/stable/manifest-syntax.html.

A.2.4 Gramine component: LibOS

The LibOS component may be thought of as a tiny re-implementation of the Linux kernel (see
Figure A.3). But with one significant difference – the Linux kernel relies on and communicates only
with the underlying hardware, whereas Gramine LibOS relies on 44 functions from the backend
component and communicates with the outside world through these 44 functions. This explains
why the implementation of Gramine’s LibOS is only one tenth of the modern Linux kernel.

Gramine intercepts all application requests to the host OS in its LibOS component. Some of these
requests are processed entirely inside the LibOS, and some are funneled through a thin API to
the backend and ultimately to the host OS. Either way, each application’s request and each host’s
reply are verified for correctness and consistency. For these verifications, Gramine maintains
internal, “shadow” state inside the LibOS. This way, Gramine defends against Iago attacks.

Gramine’s LibOS strives to be 100% compatible with the Linux kernel, even when it deviates from
standards like POSIX (“bug-for-bug compatibility”). At the same time, Gramine is minimalistic,

CONNECT D4.2 PU – Public Page 125

https://Gramine.readthedocs.io/en/stable/manifest-syntax.html
https://Gramine.readthedocs.io/en/stable/manifest-syntax.html

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

and implements only the most important subset of Linux functionality, enough to run portable,
hardware-independent applications.

LibOS implements 162 system calls out of around 360 system calls available on Linux. Many
system calls are implemented only partially, typically because real world workloads do not use
the unimplemented functionality. Some system calls are not implemented because (i) they are
deprecated in Linux, (ii) they are unused by real world applications or (iii) they do not fit the
purpose of Gramine of virtualizing only a single application [44, 4]. The list of implemented
system calls grows with time, as Gramine adds functionality required by real world workloads.

The LibOS implements the usual operating systems’ concepts, objects, and flows. There is a sub-
component to spawn new threads and manage them, abstractions for memory management via
Virtual Memory Areas (VMAs), Linux-style multi-processing support of fork() and execve(),
code to handle synchronous and asynchronous signals, code for process migration, code for
loading ELF binaries, implementation of futexes, poll() and epoll() on file descriptors, a virtual
file system, etc.

Below is a quick overview of most important supported features in Gramine’s LibOS component:

• Gramine’s LibOS supports multi-processing. A Gramine instance starts the first (main)
process, as specified in the entrypoint of the manifest. The first process can spawn child
processes, which belong to the same Gramine instance. Gramine can execute ELF binaries
(executables and libraries) and executable scripts. Gramine supports executing them as
entrypoints and via the execve() system call. In case of SGX backend, execve() execution
replaces a calling program with a new program in the same SGX enclave. Gramine also
supports creating child processes using fork(), vfork() and clone() system calls.

• Gramine’s LibOS implements multi-threading. In case of SGX backend, all threads of one
Gramine process run in the same SGX enclave.

• Gramine’s LibOS does not perform scheduling of threads, instead it relies on the host OS to
perform scheduling. In case of SGX backend, trying to perform or control scheduling would
be futile because SGX threat model has no means of control or verification of scheduling
decisions of the host OS.

• Gramine’s LibOS implements most of the Linux IPC mechanisms. LibOS implements pipes,
FIFOs and UNIX domain sockets (UDSes) via host-OS pipes. For SGX backend, all pipe,
FIFO and UDS communication is transparently encrypted. For all other IPC mechanisms
(signals, process state changes, file locks) LibOS emulates them via internal message
passing (in case of SGX, all messages are encrypted).

• Gramine’s LibOS partially implements signals. For local signals (Gramine process signals
itself, e.g. SIGABRT) and signals from the host OS (e.g. host sends SIGTERM), message
passing is not involved. For process-to-process signals (e.g. child process sends SIGCHLD

to the parent), message passing is used.

• Gramine’s LibOS supports the most important networking protocols: TCP/IP and UDP/IP.

A.2.5 Gramine component: File systems

Gramine implements file system operations, but with several peculiarities and limitations de-
scribed below. Gramine does not implement full file system stack by design. Gramine relies

CONNECT D4.2 PU – Public Page 126

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure A.4: Features of the Gramine SGX backend component.

on the host file system for most operations. The only exceptions are the “tmpfs” file system and
the pseudo-file systems, which are implemented entirely inside Gramine.

The most important peculiarity is that Gramine does not simply mirror the host OS’s directory
hierarchy. Instead, Gramine constructs its own view on the selected subset of host’s directories
and files: this is controlled by the manifest’s FS mount points. This feature is similar to the
“volumes” concept in Docker. This Gramine feature is introduced for security.

Another peculiarity is that Gramine provides several types of filesystem mounts:

• passthrough mounts (contain unencrypted files, see below),

• encrypted mounts (contain files that are automatically encrypted and integrity-protected).

Passthrough mounts must be of one of two kinds:

• containing allowed files (not encrypted or cryptographically hashed),

• containing trusted files (cryptographically hashed for integrity protection).

Additionally, mounts may be hosted in one of two ways:

• on the host OS (in passthrough mounts),

• inside the Gramine process (in tmpfs mounts).

All files potentially used by the application must be specified in the manifest file. Instead of single
files, whole directories can be specified.

Gramine also provides a subset of pseudo-files that can be found in a Linux kernel. In particular,
Gramine automatically populates /proc, /dev and /sys pseudo-file systems with most widely
used pseudo-files.

A.2.6 Gramine component: SGX backend

As mentioned before, the LibOS component relies on the 44 functions implemented in the under-
lying backend.

There are several backends available in Gramine, one for each supported environment. The
most basic backend is the Linux one (also called “direct”) – it allows Gramine to run on a normal
Linux kernel on x86-64 machines. This Linux backend implements 44 functions which serve as

CONNECT D4.2 PU – Public Page 127

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

a straight-forward “glue code” between what LibOS wants from the underlying platform and what
the underlying platform offers. In particular, the direct backend contains a simple ELF loader,
functions to facilitate process migration, memory management through Linux’s mmap()/munmap(),
thread management via Linux’s clone()/exit(), etc.

To run an application inside an SGX enclave, it is required to swap the direct backend for an SGX
backend. The SGX backend exposes the same 44 functions to the LibOS, but all these functions
are hardened to secure the application inside the enclave. All subsystems of the SGX backend
have additional checks, verifications, and, if needed, transparent encryptions.

For example, the migration of the checkpointed state from the parent process to the child process
is transparently encrypted (to prevent confidential data leakage). Similarly, pipes, messages and
signals between Gramine processes are encrypted. Also, files mounted as “protected” in the
manifest, are transparently encrypted and integrity-protected. Furthermore, additional checks
are added to prevent Iago attacks.

Note that network-socket communication is not protected by Gramine. This is because all modern
applications already enable the SSL/TLS protocol to protect their TCP/IP communications, so
there is no need to additionally re-encrypt network traffic.

A few subsystems in the SGX backend are only lightly protected. This is because there is not
much harm that can be done by a malicious host OS in e.g. thread management. The only issues
that can arise are application starvation or Denial of Service (DoS) attacks because the malicious
OS refuses to schedule enclave threads or give network data to it. But this is out of the threat
model of Intel SGX, and thus not protected against in Gramine.

A.2.7 Gramine component: SGX attestation

An important aspect of any Trusted Execution Environment is local and remote attestation. Local
attestation is used when two TEEs run on the same physical machine and remote attestation is
used when a user attests a TEE running on a remote physical machine.

Remote attestation in Intel SGX comes in two flavours: EPID [46] and DCAP [32]. The former is
used in client machines whereas the latter is used in data center environments. Gramine supports
both EPID and DCAP attestation schemes.

Gramine provides support for three levels of attestation flows:

• Local and remote SGX attestation – low-level interface that is exposed to the application via
the /dev/attestation pseudo-file system. It exposes the low-level abstractions of SGX
report and SGX quote through a set of pseudo-files. On the one hand, this interface is
flexible and allows to construct arbitrary attestation flows. On the other hand, this interface
requires modifications to the application.

• Secure channel – mid-level interface provides the RA-TLS library shipped together with
Gramine. This library offers an abstraction of a secure TLS channel, but with specially-
crafted X.509 certificates that embed the SGX quote. RA-TLS uses raw /dev/attestation

pseudo-files under the hood.

• Secret provisioning – high-level interface is the Secret Provisioning library that is also
shipped together with Gramine. This library can be pre-loaded to move the secrets (such
as private keys and passwords) into the SGX enclave, without any modifications to the
application itself. Secret Provisioning library uses RA-TLS under the hood.

CONNECT D4.2 PU – Public Page 128

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure A.5: Gramine SGX remote attestation using DCAP flows.

Applications running under Gramine can use each of the above three levels to build their attesta-
tion flows. Each next level builds on the previous one and exposes a simpler API to the application
(but also is more restricted in its functionality).

For the sake of brevity, we will omit the details of EPID SGX attestation and concentrate on the
DCAP SGX attestation scheme.

Figure A.5 shows DCAP based remote attestation. The user application runs in an SGX enclave
on a remote untrusted machine, whereas the end user waits for the attestation evidence from this
enclave on a trusted machine.

DCAP attestation starts with the enclavized user application verifying that it runs inside Gramine
and opening the special file /dev/attestation/user_report_data for write (step 1). Un-
der the hood, Gramine uses the EREPORT hardware instruction to generate an SGX Re-
port (step 2). After the SGX report is generated, the application opens another special file
/dev/attestation/quote for read (step 3). Under the hood, Gramine communicates with the
Quoting Enclave to receive the SGX Quote (step 4). The Quoting Enclave communicates with
the architectural Provisioning Certification Enclave (PCE) (step 5). The PCE connects to the
Intel service called Intel Provisioning Certification Service (PCS) to obtain the attestation collat-
eral: attestation certificates and certificate revocation lists for the SGX machine (step 6). After
obtaining all relevant collateral, the Quoting Enclave generates the SGX quote from the provided-
by-application SGX report and sends it back to the enclavized user application (step 7). The
application stores this SGX quote in its enclave memory and can later send it to the remote
user (verifier) upon request. When the remote user wants to validate the SGX enclave, it re-
quests remote attestation with it, and the enclavized application forwards the SGX quote to the
remote trusted machine (step 8). Finally, the remote user consults the cached DCAP attestation
certificates that the user is supposed to periodically fetch from the Intel Provisioning Certification
Service (PCS) (preliminary step 0). The user compares the certificates embedded in the received
SGX quote against these cached certificates (step 9). Finally, the remote user also verifies the
enclave measurements embedded in the SGX quote against the expected ones. After this verifi-
cation procedure, the remote user can trust the SGX enclave on the untrusted machine and start
sending inputs/receiving enclave outputs.

CONNECT D4.2 PU – Public Page 129

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Figure A.6: Gramine SGX remote attestation: RA-TLS X.509 certificate.

RA-TLS interface hides the complexity of the low-level /dev/attestation flows and provides
a simple and powerful abstraction of a TLS connection between the TEE and the remote user
(enhanced with remote-attestation flows) [27]. Using RA-TLS, the application can securely send
and receive arbitrary data to/from the remote user. RA-TLS is currently tied to Intel SGX but can
be adapted for other TEEs.

RA-TLS integrates Intel SGX remote attestation into the TLS connection setup. Conceptually, it
extends the standard X.509 certificate with SGX-related information (SGX quote). The additional
information allows the remote user (verifier) of the certificate to verify that it is indeed communi-
cating with an SGX enclave (attester).

Figure A.6 shows the standard X.509 certificate generated by RA-TLS (the figure shows the
DCAP based RA-TLS certificate, but the EPID based RA-TLS certificate is conceptually similar).
This certificate is self-signed because the actual chain of trust is stored in the Intel SGX certifi-
cates embedded in the SGX quote. The most important concept behind the RA-TLS certificate is
that it embeds the SGX quote (in one of the unused X.509 extension fields), which in turn embeds
the SGX report and the complete Intel SGX certificate chain. Therefore, the RA-TLS certificate
contains all the SGX-relevant information. Note how the SGX report’s REPORTDATA field contains
the secure hash of the ephemeral public key generated by the enclavized application – this is how
the RA-TLS certificate is tied to the enclavized application that generated it.

CONNECT D4.2 PU – Public Page 130

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

Appendix B

Glossary and User Roles

A-ECU An A-ECU is an ECU with a TEE providing secure storage for keys and other data. it is
able to do asymmetric and symmetric cryptography.

AIV Attestation and Integrity Verification.

Application Developer The Application Developer is responsible for designing and implement-
ing applications for the CONNECT framework.

ATL The Actual Trust Level (ATL) reflects the result of an evaluation of a trust proposition, for
a specific CCAM actor, as defined in a trust model managed by the CONNECT Trust As-
sessment Framework [9]. It quantifies the extent to which a certain node or data can be
considered trustworthy based on the available evidence.

C-ACC Co-operative Adaptive Cruise Control.

CCAM The European Commission has on 30th of November 2016 adopted a European Strategy
on Cooperative Intelligent Transport Systems (C-ITS), a milestone initiative towards cooper-
ative, connected and automated mobility. The objective of the C-ITS Strategy is to facilitate
the convergence of investments and regulatory frameworks across the EU, in order to see
deployment of mature C-ITS services in 2019 and beyond [6].

Cloud Administrator The Cloud Administrator is responsible for managing the mobile edge
cloud MEC. This includes managing capacity and keeping the software up-to-date..

CoCo Is a new project of the Cloud Native Computing Foundation (CNCF) that enables cloud-
native confidential computing by taking advantage of a variety of hardware platforms and
technologies, such as the hardware-based Trusted Execution Environment (HW-TEE). The
broader scope is to secure data in use at a pod-level, removing trust assumptions on the
cloud side by introducing confidentiality and integrity protection during runtime, through the
use of a trusted hardware. They provide resource isolation, data protection, and remote
attestation. The Confidential Containers project offers an approach for protecting cloud
native applications in a HW-TEE, without requiring further modifications to the container
image during the development process.

DLT Distributed Ledger Technology.

CONNECT D4.2 PU – Public Page 131

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

ECU An electronic control unit (ECU), also known as an electronic control module (ECM). In
automotive electronics it is an embedded system that controls one or more of the electrical
systems or subsystems in a car or other motor vehicle.

Enclave Intel SGX is a TEE provided by Intel CPUs that allows to execute a user-space process
within a hardware-protected execution environment that is called enclave.

ETSI European Telecommunications Standards Institute.

IAM Identity and Authentication Management.

IMA Intersection Movement Assistance.

KBS The Key Broker Service (KBS) helps a source enclave to establish a trusted relationship
with a enclave that is the target of a migration or upgrade. It verifies that the target is
authorited and trusted and then provides a key to source and target enclave that can be
used for state migration during upgrade/migrate..

KRPE The Key Restriction Usage Policy Engine (KRPE) is a CONNECT newly developed con-
cept for enabling the vision of local attestation. This, essentially, allows for the verification
of an extended set of device characteristics (i.e., device integrity, safety, etc. depending
on the type of trust properties considered as part of the respective trust model) without the
need to disclose the actual attestation evidence. The verification ofushc values that actually
represent the current state of the device, is checked against a policy that binds the usage
of a signing Attestation key only in the case where the device is at an expected state. Thus,
a Verifier can check the validity of the transmitted signature to assert on the correct state of
the host device.

Manifest File The Manifest File of SGX that specifies the hash value and policies of an applica-
tion to be executed within an SGX enclave. For integrity-protection, the manifest is signed
by the Application Developer .

MBD The Mis-behaviour Detector (MBD) component monitors the data from the vehicle and from
elsewhere (from CPM/CAM messages) and looks for anomalies. If these are detected is
sends mis-behaviour reports to the TAF and outside of the vehicle. Reports for the TAF will
be ‘normally’ signed, while those being sent outside will be anonymously signed.

MEC The MEC serves a number of functions. It makes more powerful computing resources
available to vehicles. These resources are provided close to the edge of the network so that
calculations can be ‘outsourced’ by the vehicles and still meet the necessary low latency
requirements. It can also combine information from vehicles in its vicinity to produce a more
detailed map of their positions and trajectories and feed this back to them together with its
assessment of their trustworthiness.

OEM An Original Equipment Manufacturer. In the context of CONNECT the OEM is the vehicle
manufacturer who, often in association with a Tier 1 supplier, designs, assembles, markets
and sells the vehicle.

PKI Public Key Infrastructure.

CONNECT D4.2 PU – Public Page 132

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

RoT The (Hardware) Root of Trust (RoT) is the minimal set of security guarantees usually pro-
vided by the hardware that is sufficient to guarantee the security of a larger TCB.

S-ECU An S-ECU is an ECU with secure storage for keys and other data, possibly a System on
Chip (SoC) with an HSM. It can only do symmetric crypto.

SGX Intel SGX is a hardware feature of Intel CPUs that provides a TEE for user-space ap-
plications on Intel CPUs. The goal is to protect an application from unauthorized access
or modification by any component outside the TEE. I.e. neither the operating system nor
other untrusted applications should be able to breach the confidentiality or integrity of the
protected application.

SoC A system on a chip or system-on-chip (SoC) is an integrated circuit that integrates most or
all components of a computer or other electronic system. These components almost always
include on-chip central processing unit (CPU), memory interfaces, input/output devices and
interfaces, and secondary storage interfaces, often alongside other components such as
radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.

TAF The TAF component does the trust assessments and forms trust opinions on the vehicle and
data. The trust opinion on the data is sent outside the vehicle and needs to be anonymously
signed.

TCB The Trusted Computing Base (TCB) of a computer system is the set of all hardware,
firmware, and/or software components that are critical to its security, in the sense that bugs
or vulnerabilities occurring inside the TCB might jeopardize the security properties of the
entire system. By contrast, parts of a computer system that lie outside the TCB must not be
able to misbehave in a way that would leak any more privileges than are granted to them in
accordance to the system’s security policy.

TCH The Trustworthiness Claims Handler (TCH) is the component responsible for sharing all
trust-related information outside the Vehicle in a privacy-preserving manner. This data bun-
dle (encoded in the context of a VP) comprises Trustworthiness Claims (TCs), the Trust
Opinion (produced by the TAF) and the Misbehavior Report (produced by the MBD). The
TC is usually produced (by the Attester) so as to provide trustworthiness evidence (“Trust
Source”) that can be used for appraising the trustworthiness level of the Attester in a mea-
surable and verifiable manner. Measurable reflects the ability of the TAF to assess an
attribute of the Attester against a pre-defined metric (e.g., RTL) while verifiability highlights
the need for all claims to have integrity, freshness and to be provably & non-reputably bound
to the identity of the original Attester. Examples sets of TCs might include (among other at-
tributes) evidence on system properties including: (i) integrity in the context that all transited
devices (e.g., ECUs) have booted with known hardware and firmware; (ii) safety meaning
that all transited devices are from a set of vendors and are running certified software appli-
cations containing the latest patches and (iii) communication integrity.

TEE A Trusted Execution Environment allows to execute applications while enforcing well-
defined security policies for a given application. An example is SGX .

TEE-GSE The TEE Guard Security Extensions (TEE-GSE) is the set of security controls, devel-
oped within CONNECT, for supporting the secure life-cycle management of a CCAM actor:
from the secure on-boarding and enrollment of all CCAM applications/services, instan-
tiated in the vehicle and/or MEC, and CONNECT -related security components including

CONNECT D4.2 PU – Public Page 133

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

the establishment of the necessary cryptographic primitives (for their later interactions with
other CCAM actors via secure and authenticated communication channels) to the run-time
monitoring and extraction of system measurements/properties, serving as trustworthi-
ness evidence, and reaction policy enforcement mechanisms to any indication of risks
and changes in the trust state of a device (state migration of a device).

Tier 2 A Tier 2 supplier provides components to the Tier 1 suppliers and is the next level in
the supply chain. Tier 2 suppliers may not just provide components for the automotive
industry, but other industries as well. For CONNECT we focus on the suppliers of ECUs
(micro-controllers) used in the vehicle and their role in providing identity keys for them.

Tier 1 A Tier 1 supplier directly supplies OEMs with components that are ready for installation
into the vehicle. They work closely with the OEM at all stages of a vehicle’s development.
The Tier 1 supplier may well work with several manufacturers on the development of their
vehicles. The Tier 1 supplier will obtain the components that they need from Tier 2 suppli-
ers.

TMC The Trusted Monotonic Counter (TMC) allows a TEE to create, increase, test, or destroy
a given counter with a unique id. The key security objectives are (a) that all stakeholders
see the same value and (b) once increased, the counter cannot be decreased at all. This
service can be used to implement rollback-protection or guarantee that only one instance
of a service is running at any point in time..

VC Vehicle Communication (V2X) This provides communication facilities for the vehicle. Con-
nectivity – automotive ethernet, 5G, V2X.

VP The Verifiable Presentation (VP) is the data structure used for disclosing only a subset of
the trust-related information needed for the receiving entity to evaluate the trust level of
the originator. This allows the TCH to construct data bundles that hold the Trust Opinion,
Misbehavior Report and “abstracted” attestation assertions, as described in D5.1 [11].

Zonal controller (ZC) The Zonal controller (ZC) is an A-ECU that acts as a gateway between
the ECUs and the vehicle computer. As an A-ECU they will have a TEE providing secure
storage for keys and other data and will be able to do asymmetric and symmetric cryptog-
raphy.

CONNECT D4.2 PU – Public Page 134

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

References

[1] ISO/SAE 21434:2021. Road vehicles Cybersecurity engineering. ISO/TC 22/SC 32 Techni-
cal Standard, 2021. https://www.iso.org/standard/70918.html.

[2] 5GAA Automotive Association. Cross Working Group Work Item gMEC4AUTO: Global MEC
Technology to support automotive services - Cybersecurity for Edge Computing. Technical
report, 5GAA Automotive Association, 2023.

[3] Brewer Eric A. Kubernetes and the path to cloud native. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (SoCC). Association for Computing Machinery, 2015.

[4] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and Jason
Nieh. POSIX abstractions in modern operating systems: the old, the new, and the missing.
In EuroSys, 2016.

[5] Enclave cc Community. enclave-cc: Process-based confidential container runtime. https:
//github.com/confidential-containers/enclave-cc, 2023. [Online; accessed Aug-
2023].

[6] Cooperative, connected and automated mobility (CCAM). https://transport.ec.

europa.eu/transport-themes/intelligent-transport-systems/cooperative-

connected-and-automated-mobility-ccam_en.

[7] Confidential Containers Community. Confidential containers. https://github.com/

confidential-containers/confidential-containers/, 2023. [Online; accessed Aug-
2023].

[8] Deirdre Connolly, Chelsea Komlo, Ian Goldberg, and Christopher A Wood. Two-round
threshold schnorr signatures with frost. Technical report, Internet-Draft draft-irtf-cfrg-frost-
15, Internet Engineering Task Force, 2022.

[9] The CONNECT Consortium. Architectural specification of connect trust assessment frame-
work, operation and interaction. Deliverable D3.1, Project 101069688 within HORIZON-CL5-
2021-D6-01, Jun. 2023.

[10] The CONNECT Consortium. Conceptual architecture of customisable tee & attestations.
Deliverable D4.1, Project 101069688 within HORIZON-CL5-2021-D6-01, Dec. 2023.

[11] The CONNECT Consortium. Distributed processing and CCAM trust functions offloading
& data space modelling. Deliverable D5.1, Project 101069688 within HORIZON-CL5-2021-
D6-01, Nov. 2023.

CONNECT D4.2 PU – Public Page 135

https://www.iso.org/standard/70918.html
https://github.com/confidential-containers/enclave-cc
https://github.com/confidential-containers/enclave-cc
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/cooperative-connected-and-automated-mobility-ccam_en
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/cooperative-connected-and-automated-mobility-ccam_en
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/cooperative-connected-and-automated-mobility-ccam_en
https://github.com/confidential-containers/confidential-containers/
https://github.com/confidential-containers/confidential-containers/

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

[12] The CONNECT Consortium. Operational landscape, requirements and reference architec-
ture - initial version. Deliverable D2.1, Project 101069688 within HORIZON-CL5-2021-D6-
01, Nov. 2023.

[13] The CONNECT Consortium. Distributed processing, fast offloading and MEC-enabled or-
chestrator. Deliverable D5.2, Project 101069688 within HORIZON-CL5-2021-D6-01, Mar.
2024.

[14] The CONNECT Consortium. Integrated framework (first release) and use case analysis.
Deliverable D6.1, Project 101069688 within HORIZON-CL5-2021-D6-01, May 2024.

[15] The CONNECT Consortium. Trust & risk assessment and CAD twinning framework (initial
version). Deliverable D3.2, Project 101069688 within HORIZON-CL5-2021-D6-01, February
2024.

[16] The CONNECT Consortium. Virtualization- and edge-based security and trust extensions
(first release). Deliverable D4.2, Project 101069688 within HORIZON-CL5-2021-D6-01, Jan.
2024.

[17] The CONNECT Consortium. MEC-enabled orchestrator, continuous authorization, trust
management and DLT-based secure information exchange. Deliverable D5.3, Project
101069688 within HORIZON-CL5-2021-D6-01, Mar. 2025.

[18] The CONNECT Consortium. Virtualization- and edge-based security and trust extensions
(final release). Deliverable D4.3, Project 101069688 within HORIZON-CL5-2021-D6-01,
Mar. 2025.

[19] Intel Corporation. Intel SGX for Linux. https://github.com/intel/linux-sgx, 2023.
[Online; accessed Aug-2023].

[20] Heini Bergsson Debes, Edlira Dushku, Thanassis Giannetsos, and Ali Marandi. Zekra: Zero-
knowledge control-flow attestation. In Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, ASIA CCS ’23, page 357–371, New York, NY,
USA, 2023. Association for Computing Machinery.

[21] Heini Bergsson Debes and Thanassis Giannetsos. Zekro: Zero-knowledge proof of integrity
conformance. In ARES ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[22] Heini Bergsson Debes and Thanassis Giannetsos. Retract: Expressive designated verifier
anonymous credentials. In Proceedings of the 18th International Conference on Availability,
Reliability and Security, ARES ’23, New York, NY, USA, 2023. Association for Computing
Machinery.

[23] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 1084–1101. IEEE, 2019.

[24] European Telecommunications Standards Institute (ETSI). Network Functions Vir-
tualisation (NFV) Trust; Report on Attestation Technologies and Practices for Se-
cure Deployments. ETSI Group Report GR NFV-SEC 007 V1.1.1, ETSI, October
2017. https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/007/01.01.01_60/
gr_nfv-sec007v010101p.pdf.

CONNECT D4.2 PU – Public Page 136

https://github.com/intel/linux-sgx
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/007/01.01.01_60/gr_nfv-sec007v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/007/01.01.01_60/gr_nfv-sec007v010101p.pdf

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

[25] IETF Remote Attestation Working Group. Tee device interface security protocol (tdisp). RFC
18268, August 2022.

[26] Andreas Reuter Jim Gray. Transaction Processing. Morgan Kaufmann, 1992.

[27] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and Mona Vij.
Integrating Remote Attestation with Transport Layer Security, 2019.

[28] Chelsea Komlo and Ian Goldberg. Frost: Flexible round-optimized schnorr threshold sig-
natures. In Selected Areas in Cryptography: 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers 27, pages 34–65.
Springer, 2021.

[29] Dimitrii Kuwaiskii. [State migration] Dumping Docker containers · Issue #1 ·
dimakuv/gramine-connect. https://github.com/dimakuv/gramine-connect/issues/1.

[30] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin,
Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rudiger Kapitza, Christof
Fetzer, and Peter Pietzuch. Glamdring: Automatic application partitioning for intel SGX. In
USENIX Annual Technical Conference (USENIX ATC), 2017.

[31] Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao Yao, Qingyang Zhang, and Weisong
Shi. Computing systems for autonomous driving: State of the art and challenges. IEEE
Internet of Things Journal, 8(8):6469–6486, 2021.

[32] John P Mechalas. Quote Generation, Verification, and Attestation with Intel® Software
Guard Extensions Data Center Attestation Primitives (Intel® SGX DCAP). https:

//www.intel.com/content/www/us/en/developer/articles/technical/quote-

verification-attestation-with-intel-sgx-dcap.html, 2021. [Online; accessed
Aug-2023].

[33] Microsoft. Confidential consortium framework. http://ccf.microsoft.com/.

[34] Microsoft. Confidential consortium framework - glossary. https://microsoft.github.io/
CCF/main/overview/glossary.html#term-CFT.

[35] Microsoft. Confidential consortium framework - governance. https://microsoft.github.
io/CCF/main/governance/index.html.

[36] Microsoft. Confidential consortium framework - recovery. https://microsoft.github.io/
CCF/main/operations/recovery.html.

[37] Aaron Miller, Kyungzun Rim, Parth Chopra, Paritosh Kelkar, and Maxim Likhachev. Co-
operative perception and localization for cooperative driving. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 1256–1262, 2020.

[38] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang. NARRATOR: Secure and
Practical State Continuity for Trusted Execution in the Cloud. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS ’22, pages
2385–2399, New York, NY, USA, November 2022. Association for Computing Machinery.

[39] Kubernetes Projekt. Pod Lifecycle. https://kubernetes.io/docs/concepts/workloads/
pods/pod-lifecycle/.

CONNECT D4.2 PU – Public Page 137

https://github.com/dimakuv/gramine-connect/issues/1
https://www.intel.com/content/www/us/en/developer/articles/technical/quote-verification-attestation-with-intel-sgx-dcap.html
https://www.intel.com/content/www/us/en/developer/articles/technical/quote-verification-attestation-with-intel-sgx-dcap.html
https://www.intel.com/content/www/us/en/developer/articles/technical/quote-verification-attestation-with-intel-sgx-dcap.html
http://ccf.microsoft.com/
https://microsoft.github.io/CCF/main/overview/glossary.html#term-CFT
https://microsoft.github.io/CCF/main/overview/glossary.html#term-CFT
https://microsoft.github.io/CCF/main/governance/index.html
https://microsoft.github.io/CCF/main/governance/index.html
https://microsoft.github.io/CCF/main/operations/recovery.html
https://microsoft.github.io/CCF/main/operations/recovery.html
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

D4.2 - Virtualization- and Edge-based Security and Trust Extensions

[40] The raft consensus algorithm. https://raft.github.io/.

[41] Luis F. G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan Rhodes, and Srini-
vas Devadas. Virtual monotonic counters and count-limited objects using a TPM without a
trusted OS. In Proceedings of the First ACM Workshop on Scalable Trusted Computing,
STC ’06, pages 27–42, New York, NY, USA, November 2006. Association for Computing
Machinery.

[42] Stefano Tessaro and Chenzhi Zhu. Revisiting bbs signatures. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 691–721.
Springer, 2023.

[43] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin,
Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald Porter. Cooperation and
Security Isolation of Library OSes for Multi-Process Applications. In EuroSys, 2014.

[44] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald Porter. A Study of Modern
Linux API Usage and Compatibility: What to Support When You’re Supporting. In EuroSys,
2016.

[45] Chia-Che Tsai, Mona Vij, and Donald Porter. Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX. In USENIX ATC, 2017.

[46] Sardar Muhammad Usama, Quoc Do Le, and Fetzer Christof. Towards Formalization of En-
hanced Privacy ID (EPID)-based Remote Attestation in Intel SGX. In Euromicro Conference
on Digital System Design (DSD), 2020.

[47] N. van Ginkel, R. Strackx, and F. Piessens. Automatically generating secure wrappers for
SGX enclaves from separation logic specifications. In Asian Symposium on Programming
Languages and Systems, 2017.

CONNECT D4.2 PU – Public Page 138

https://raft.github.io/

	Introduction and Overview
	Relationship with other Workpackages & Deliverables
	Scope and Purpose
	Deliverable Structure

	Extending the CONNECT Trusted Execution Architecture to the MEC
	CONNECT Trusted Computing Base & Building Blocks
	CONNECT TEE Guard Extensions & Building Blocks
	The CONNECT Trusted Execution Architecture
	CONNECT MEC Information Flows

	Secure Container Lifecycle Management on Cloud/Edge/Vehicle Continuum
	Container Management in CONNECT Far-Edge & MEC
	Docker-Style Container Management for TEE-protected Workloads

	Refined User Stories for Security-Critical Features of CONNECT
	Introduction to the CONNECT User Stories
	User Stories for Preparing the Vehicle
	User Stories for Assessing Trustworthiness of Vehicle or Services
	User Stories for Re-Establishing Trustworthiness
	User Stories for Workload Protection Using a Trusted Execution Environment
	User Stories for Creating a Trusted Execution Environment
	Stories for Upgrading and Migrating Protected Workloads
	User Stories for Protection of Workloads on a Mobile Edge Cloud (MEC)

	The CONNECT Cryptographic Protocols for Enabling Dynamic Trust Assessment
	Determinants Behind CONNECT Crypto Agility
	CONNECT Crypto Primitives & Building Blocks
	Preparing the Vehicle for the CCAM Continuum
	CONNECT Configuration Integrity Verification as a Trust Assessment Source
	Constructing Zero-Knowledge Trustworthiness Claims
	Anonymising Threshold Signatures
	Threshold Update Delegation

	Securing the Edge Components of CONNECT
	High-level Architecture for Secure Migration of Intel SGX and Gramine
	Required Infrastructure Services
	Implementing TEE Security Guarantees

	Conclusion and Outlook
	Open Questions and Next Steps for Workpackage 4

	Design Details of the CONNECT Trusted Execution Environment
	The Intel SGX Trusted Execution Environment used in CONNECT in Detail
	Gramine - A Library OS for Seamless Protection of CCAM Applications

	Glossary and User Roles
	Bibliography

