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Executive Summary

The document constitutes the second deliverable of the CONNECT WP5 work gathering the
project achievements along three main research fronts:

The design of the task offloading logic -as a generic theoretical algorithm- to identify the needs
and steps of shifting demanding tasks to the infrastructure. Then, relying on the proposed algo-
rithm, the identification of practical engineering challenges to be addressed in the subsequent
WP6 real-world (SMTD) demonstrator.

The detailed software design and specification of involved tools to realise the MEC-enabled CON-
NECT Orchestrator which deploys software to all automotive points of interest (i.e., vehicle plat-
form, edge and cloud infrastructure). Detailed descriptions highlight the readiness level of the
first version of the CONNECT Orchestrator.

Finally, the CONNECT blockchain solution is motivated and specified (while its implementation
will be detailed in the final WP5 deliverable). Its architecture and the way to fulfil the CONNECT
needs is explained. Furthermore, the involved data requirements are defined together with the
required smart contracts. The work concludes with CONNECT blockchain data management
choices in terms of access control policies and encryption attributes.

The work presented in the deliverable at-hand, together with the D5.1 inputs allows the project
a) to realise the (final) CONNECT confidential containers orchestration layer, and b) build the
CONNECT blockchain overlay to store CONNECT claims and ensure auditability. (Note that the
security mechanisms included in the CONNECT TEE guard and employed to construct the D5.1
verifiable credentials and claims are detailed in D4.2) As such, the project is enabled to move
towards the final WP5 technology outcomes to feed the forthcoming CONNECT integration and
demonstration.
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Chapter 1

Introduction

The document at-hand constitutes the second outcome of CONNECT WP5. It serves as a second
yet fundamental WP5 pillar towards the final outcome(s) of this workpackage.

In terms of its content, the deliverable gathers two main threads of the WP work: the first one
(Sections 2 and 3) refers to the task offloading process relying on the D5.1 state-of-the-art anal-
ysis. A generic algorithm for task-offloading is followed by practical considerations accounting
for the characteristics of the CONNECT set-up and highlighting the dimensions to be evaluated.
Moreover, the implementation details of the CONNECT containers’ orchestrator are discussed.
The employed orchestration technology is motivated and described while particular emphasis is
placed on its relevance to the concept of confidential containers and the way their deployment
is engineered. A brief presentation of the current in-lab CONNECT deployment highlights our
progress towards the final D5.3 release. The aforementioned work corresponds to the ongoing
tasks 5.1-5.3.

The second part (Sections 4 and 5) motivates and discusses the CONNECT Blockchain tech-
nology. It details the progress along the CONNECT Blockchain infrastructure where accountable
trust assessment information and attestation-related evidence are to be stored and shared. The
requirements (introduced in D2.1) are refined while smart contracts and the way to manage the
involved data are detailed. That work relates to T5.3 but mainly corresponds to T5.4 achieve-
ments.

Looking at the big picture, the work presented here allows the project to proceed to its final
implementation effort towards :

• the MEC-enabled virtualized resources orchestrator to drive the CONNECT functionality
(along all automotive points of interest i.e., vehicle, MEC and cloud) and support its task
offloading capability in the considered automotive setting.

• the design and development of Blockchain-based technology to monitor/store CONNECT
trust-related and attestation data, ensuring accountability of the automotive actors.

Along these lines, D5.2 sets the basis for the finalization of the CONNECT (MEC-enabled) com-
munication technology; the orchestration of confidential containers and the (different dimensions
of the) secure data sharing concept. The latter involves the verifiable presentations (see D5.1)
and the capability for auditable storage of claims through the Blockchain usage. Those contribu-
tions will help WP5 deliver its final outcome (D5.3 release) and most importantly, offer the whole
communications stack to the WP6 demonstrator.
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1.1 Scope and Purpose of the Document

The document first aims to describe the CONNECT task-offloading; a general CCAM solution
as well as the practical considerations tailored for the CONNECT demonstration set-up, are de-
tailed. It also seeks to cover the application containers ICT technology explaining the CONNECT
mechanisms required for confidential deployments. Finally, the deliverable motivates the usage
and describes the functionality of a Blockchain layer to keep the CONNECT attestation results
and trust-related data.

Overall, the work carried out so-far and described in this deliverable, allows CONNECT to a)
move towards the final version of (MEC-enabled) orchestrator for managing confidential contain-
ers and b) introduce all design principles and Blockchain data management algorithms/controls
for auditable CONNECT data exchanges.

1.2 Relationship with other CONNECT Deliverables

The deliverable presents the work that acts as the solid basis for the finalisation of the WP5
implementation work (to be reported in D5.3).

On the ”horizontal axis” (see Figure 1.1), it draws on the outcome of the D5.1; the so-far back-
ground of offloading solutions helps us suggest a task-offloading logic appropriate for the auto-
motive setting. Moreover, D5.1 introduces the verifiable credentials and presentations which offer
a way for trust-related data to be captured and securely pushed to the CONNECT Blockchain
(see Chapter 5). Accordingly, D5.2 presents the first version of the CONNECT orchestrator and
the Blockchain network. These will act as a basis for their final version to be detailed in D5.3.

Figure 1.1: Relation of D5.2 to other deliverables and WPs
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On the vertical axis (of Figure 1.1), the deliverable builds on top of the WP2 specifications work
(i.e., MEC requirements, architecture and use-cases introduction, detailed in D2.1). Subse-
quently, D5.2 provides insights to the WP3 TAF development and deployment, which should be
closely coupled with the operation and needs of CONNECT confidential containers. In parallel,
the implemented modules of the CONNECT orchestrator will follow the confidential communica-
tion principles and rely on the corresponding technology (e.g., enclave-cc [27]), as determined in
WP4 (D4.2). Finally, the integration tasks (D6.1) and use cases analysis (D6.2) will be based on
the final (i.e., integration-ready) version of the CONNECT application containers orchestrator as
well as the blockchain layer, introduced in this deliverable.
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Chapter 2

The CONNECT Task-Offloading

2.1 Motivation and needs

The concept of task-offloading (see D5.1 definition) holds a significant role in the CONNECT vi-
sion. It involves the shift of tasks from the vehicle(s) to the infrastructure where the computational
resources are typically richer. Subsequently, the result of the task execution may need to be re-
turned to the original vehicle (and/or neighboring vehicles), or, trigger other actions (such as the
communication to a cloud CCAM server).

The main motivation to employ task-offloading operations is (in line with the D5.1 discussed back-
ground) the increased in-vehicle computation needs and the ever-increasing complexity/computational
requirements of the CCAM applications, which may also combine information accumulated from
other vehicles to deliver a consolidated service/view for connected vehicle applications. In view
of the higher automation level of connected vehicles (mainly with the inclusion of advanced ML-
based, cooperative perception and positioning capabilities [21]), further computational needs are
posed, even overcoming the proliferation (rate) of capable in-vehicle devices/hardware [19]. Other
needs such as the requirement for a certified1 vehicle operation can also motivate task offloading.
Finally, reasons such a faulty vehicle device or the identification of compromise serve as triggers
for task migration rather than offloading (as defined in D5.1)

Interestingly, the actual task to be offloaded may not only involve a CCAM service or the as-
sociated CCAM data; the actual trust computations of the CONNECT framework (i.e., informa-
tion stemming from the TAF data sources, as explained in D3.2) may also be the subject of the
task-offloading function. Centrally gathering and fusing trust opinions may become beneficial for
dynamic trust assessment purposes (see D3.2). In all of the above cases, it is straightforward to
expect that it is the latency of the offloading process which holds the critical key-role2 in the given
environment (see relevant comments in Section 2.3). It follows that a potentially increased time
needed (i.e., delay) caused by network latency or heavy trust-related computations, may render
the offloading functionality impractical.

The above discussion points to the following main needs for the task-offloading operation:

1UN R155 [1] suggests the existence of a cybersecurity management system applied through the whole life cycle
of a vehicle. Then, (the cybersecurity) operation of each vehicle platform is certified using ISO/SAE 21434 [2]
means. In case a computation task (of a CCAM application) has not been considered in the (latest) certification
process, offloading it to the infrastructure could be a way for the vehicle to remain compliant with its latest certificate.

2Energy consumption is considered in literature [20] as almost equally-important for task-offloading. However, it
lies outside the CONNECT scope.
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• Data availability on multiple involved quantities such as CPU utilisation, memory, network
resources, bandwidth etc (see D5.1 and the rest of this chapter). All of those constitute
input-data to the task offloading process and are typically collected and become available
through telemetry means [32].

• A decision algorithm that based on the accumulated telemetry data and the service require-
ments (e.g., end-to-end service delay) decides either to offload a task to the infrastructure,
or execute it locally.

• The task-offloading functionality would in general require the relevant software instances re-
siding both at the vehicle platform and the infrastructure. Accordingly, the relevant (HW/SW)
modules would need to be assessed in terms of trustworthiness; that points to the notion
of the federated trust assessment (TAF), as discussed in D3.2.

In more practical terms, these dimensions and the extent to which each of them is going to be
fulfilled, is expected to be shaped by the characteristics and limitations of the studied use-case.

2.2 The CONNECT task-offloading: a generic algorithm

This section adopts a generic (automotive) standpoint whereby a vehicle and multiple candidate
offloading locations at the (infrastructure) may be available 3. While this approach would require
the availability of multiple MEC locations and apparently the support of an MNO, we choose to
elaborate on it in order to gain helpful insights towards more practical considerations (in Sec-
tion 2.3).

2.2.1 Focus points, modeling assumptions and remarks

The main question in the considered setting of the in total K candidate MEC locations (see
Figure 2.1) is a way to identify the most prominent one to offload a given task; prominent may
have numerous meanings in line with the objective (see D5.1) that is -each time- to be minimized.
In our case, as earlier discussed, time (in terms of delay) is the central parameter that CONNECT
aims to study and ”correlate” with the involved trust computations.

3The considered setting may become even more complex under the assumption that multiple MNOs as well as
multiple MEC service providers are offering the cellular network connectivity and the (offloading) destination platform,
respectively. To address such an approach would call for resorting to impractical optimizations [17] as well as insights
provided by an MNO and/or MEC service provider; both options go beyond the CONNECT scope.
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Figure 2.1: An offloading set-up of multiple MEC servers and involved delays

We therefore, identify (in Figure 2.1) three main time periods (delays) that are relevant to the
task offloading operation. The time T1 required to carry-out any local (i.e., in-vehicle) processing
and trust-computation, the time T2 which is the network delay (for application and trust data) to
reach the MEC server and finally, T3 which reflects the time needed for the offloaded task to
be carried out by the MEC-hosted software. Under this setting, the main research question is
the identification of the i-th MEC server which enables the minimization of the sum of all times
T1 + T2 + T3.

Figure 2.2: The process required for having the T3 available at the vehicle

Our analysis adopts as a starting point the fact that the task-offloading decision (i.e., whether to
perform task offloading or execute locally on the vehicle) takes place at the vehicle, where all the
relevant data should be gathered. This approach is based on the following points:

1. safety reasons [33] prevent the remote management of tasks, which is inline with OEM
strategies suggesting that critical decisions remain with the vehicle [22]
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2. any (critical) decision if taken at the infrastructure side would require a further increase of
the uncertainty (i.e., typically present in any communication link) and potential risks.

3. the input-data (e.g., sensor readings) for any driving decisions are directly available in the
vehicle while requiring time to be sent to the infrastructure; even if this time is minimal,
significant changes may appear in the environment [3] (due to increased vehicle speed).

4. in line with the previous reasons, the majority of the relevant background (see D5.1) con-
siders the vehicle as the decision-making point for task-offloading.

The same approach will be adopted in our practical task-offloading consideration (see section 2.3)
as well as the CONNECT task-offloading demonstrator (in WP6).

2.2.2 Proposed offloading algorithm

The proposed algorithm (presented in as pseudo-code in Algorithm 1) is a simple greedy heuristic
algorithm which relies on the idea that T1 and T2 can be estimated by the vehicle, while T3 may
essentially attain any value in (0,+∞); this is because it remains subject to the MEC resources
that vary (rather unpredictable) in the course of time. To obtain a T3 value, a process like the
one depicted in Figure 2.2 needs to be followed for every candidate server; that identification task
would apparently add further delays.

On the contrary, the sum of T1 + T2 can be known to the vehicle by a) any type of benchmark-
ing [12] of the local trust (TAF) computations and b) by obtaining round-trip delay estimations
with the usage of tools such as the ping utility or any correlation with the distance-to-base, typ-
ically provided by off-the-shelf 5G modems [30]. Along these lines, the sum T1 + T2, called
PartialSumi for server i (see algorithm 1, line 2), can act as the main criterion for the identifica-
tion of the most appropriate MEC server, greedily estimating the process time T3.

Algorithm 1 Task-offloading selection (set of K servers)

1: Estimate sumi(T1i, T2i) for i = 1 to K
2: Vector PartialSumi ← sumi(T1i, T2i) ∀i
3: Rank vector PartialSumi(.) from lowest to higher values
4: for j=1 to K do
5: ping server i corresponding to PartialSumi(j) and estimate T3(i)
6: if PartialSumi + T3(i) ≤ THRS then
7: Terminate the process and select server i
8: end if
9: end for

Therefore, having identified a vector of T1 + T2 values (line 2) and subsequently ranked that
vector with respect to the PartialSumi =(T1i + T2i) for every candidate server, the proposed
algorithm suggests a sequential query (line 4-5) to every candidate MEC location, starting from
the one with the lowest PartialSum. The query involves on its time needs (i.e., T3 as depicted
in Figure 2.2) to execute the task (to be offloaded). Then, a greedy stopping condition (line 7) for
the search process suggests to conclude the process by the time that server i which provides a
T3i value such as the total sum of delays i.e., PartialSumi+T3i is lower than THRS, has been
identified. The THRS threshold value marks the tolerable delay by an automotive application to
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have a task offloaded and carried-out at the infrastructure. Clearly, there are no guarantees that
the identified server is the one yielding the globally minimum total delay.

The corresponding threshold THRS clearly depends on the involved in the offloading (auto-
mated) driving application and its safety requirements (see [7] or [3]). It is safe to assume that
the relevant THRS is a-priory known for all the current (even day-2 [31]) driving applications.
Finally, as regards the proposed algorithm’s time complexity, it is straightforward that the worst
case scenario involves the estimation of cumulative T1 + T2 delays for the K servers and then
the query for T3, once again, of all K servers. That is O(2K)=O(K), resulting in a welcome
linear algorithm with respect to the number of different MEC location candidates.

2.3 The CONNECT task-offloading in practice: compliance
with available data and resources

We now proceed to more practical considerations of the task offloading process in order act as a
basis for our real-world experimentation and demonstration (WP6). Along this line, we first point
to some important insights provided by our analysis of Section 2.2.

In real practice, the result of the execution of an offloaded (to the infrastructure) task may trigger
a communication (i.e., sending the task results) back to the vehicle(s), to road users, or upwards
to cloud-based services. The former case is depicted in Figure 2.3 where the delays (i.e., T4
and T5) of the second leg (i.e., from the edge server to the vehicle) are shown. Those how-
ever, are quantities that are either application-specific; meaning that the time T5 for the vehicle
reaction is subject to the currently enabled automotive application in the vehicle. Or, the vehicle
position affecting the T5 value, is not accurately known. Clearly, for both T4 and T5 it is non
practical/(feasible) to be measured. As such, in the experimental analysis of the offloading we
will focus on the three (T1, T2 and T3) delays and neglect the ones appearing in the grayed-out
part of Figure 2.3.

Figure 2.3: Task-offloading may include a second communication leg and some in-vehicle com-
putations (grayed-out part)
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Considering the (Section 2.2.2) automotive setting shown in Figure 2.1, we highlight some points
of significance for the CONNECT real-world (experimentation) environment:

• The available resources (and consortium line-up) suggest that the experiments would be
carried-out having a ’single cell’ set-up. That is posed by the available experimentation
hardware set-up but also the lack of MEC service provider(s) or MNOs in the CONNECT
partner profiles. That means that our focus will be placed on offloading engineering aspects
under the case of a single offloading server. That option may prevent the experimentation
with multiple MNO trust domains or the ”follow-me-Edge” functionality [4] but allows the
exploration of open fundamental questions (as abstracted in the D2.1 SMTD user-story 5).

• Regardless the actual destination of the offloaded task result i.e., whether sending it back to
the vehicle(s) (for instance as shown in the lower part of Figure 2.3) or forwarding the result
to a cloud server, the decision to offload a (CCAM) task or not, will be mainly shaped by
time requirements (when MEC resources are sufficient). In all cases, when trying to minise
the total time for having a task computed at the MEC, the tolerance/need for longer yet more
demanding trust computations (included within the T1 and potentially T3 delays) needs to
be assessed in relation to the achievable network delay (T2) to have the task shifted at
the MEC. The CONNECT experimentation aims to shed light on those (in-practice) under-
explored directions.

• The estimation of the in-vehicle computations (i.e., taking T1 time in Figure 2.3) call for
benchmarking of trust computations (see Section 2.2.2). Those would involve the vehicle
platform but could also extend to the MEC server (to be included in T3), if the notion of
federated TAF (D3.2) becomes relevant.

• Clearly the practical requirement of having all input-to-the-offloading-decision data avail-
able, is to be fulfilled by monitoring and telemetry tools (see Section 3.4). Such data include
the computational resources (e.g., CPU utilisation, memory, etc) at the vehicle platform and
the infrastructure side which are typically collected by native K3s tools and are designed
for seamless integration and straightforward data gathering. However, alongside this, we
recognized the need for a more complex telemetry system, which will be discussed in D5.3,
for collecting network-related telemetry data, for example. Although most theoretical and
simulation studies (see D2.1) consider these data readily available, in practice, it remains
challenging to collect them.

All above points essentially constitute open research questions for WP6 work. Importantly, most
of the above directions (e.g., the achievable end-to-end latency) have been already identified in
the D2.1 KPIs.

On a final research-related note, the task-offloading process has been extensively studied in
literature, mainly through modeling tools and simulation (see D5.1). However, there is a very
limited set of works providing results from real-world experiments (e.g., [34] or based on real-
world data [5]). Our WP6 work will contribute towards addressing this research gap.
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Chapter 3

The CONNECT Containers Orchestrator

This chapter details the progress on the CONNECT orchestration technology. It highlights the
tools employed to create and manage confidential containers. Furthermore, it elaborates on the
relevant deployment options in each of the CONNECT points of interest (i.e., cloud, edge and
vehicle) discussing an indicative example of the involved flow of actions for the orchestration and
management of confidential containers, as well as the relevance to the task-offloading demon-
strator.

3.1 CONNECT Orchestrator software design and development

In what follows, the CONNECT orchestrator instance is motivated and detailed from an architec-
tural point of view.

3.1.1 The CONNECT approach to container orchestration

The CONNECT orchestration solution will not be built from scratch, but will be realised on top of
already available (state-of-the-art, SoTA) container management and orchestration platforms. In
the project, the cloud-native approach is adopted, in which all modules and functionalities pre-
sented in detail in D2.1 will be developed as lightweight services (”Microservices”) and deployed
as software containers. These software containers will be lightweight services, loosely coupled,
as per the cloud-native paradigm, able to communicate with in-cluster secure (CONNECT) con-
tainer services and legacy applications, but also, if necessary, with the outside world.

In general, Kubernetes (K8s) is considered as the SoTA container orchestration platform, pro-
viding automated features for deployment and management, scaling, networking, and load bal-
ancing functionalities for the containers, the applications as well as the infrastructure nodes that
host them. The “regular” K8s container orchestration platform carries a heavy CPU and memory
footprint as it is designed for large-scale cloud computing clusters. Therefore, in the CONNECT
case, where a plethora of resource-constrained edge devices exist (e.g., the on-board units -
OBUs on CONNECT vehicles), we explored a more lightweight solution.

Particularly, in the last few years several lightweight Kubernetes distributions have emerged [8].
Indicatively such distributions include Minikube, MicroK8s, K3s, k0s, KubeEdge, or MicroShift,
to mention just a few of them. These solutions are targeting to support container orchestration
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also on resource-constrained devices at the edge (e.g., at the MEC) or at the far-edge, i.e., at the
focal point closer to the end-sensors where data are generated (e.g., on vehicle). This approach
is deemed as an appropriate fit for the CONNECT case and CCAM applications.

Especially for resource constrained edge devices in factories, autonomous cars, or smart cities,
the performance overhead added because of the container orchestration functionalities may not
be negligible [15], therefore the selection of the appropriate orchestration platform is important.

To help with this selection a short analysis was realised. The analysis took into consideration
the CONNECT orchestration requirements and based on the following aspects concludes the
lightweigth Kubernetes distribution to be used in CONNECT: a) papers presenting comparison
between lightweight Kubernetes distributions; b) compatibility issues and device dependencies;
c) past experience is using selected distributions.

Regarding the first aspect, papers [8], [15] and [16] present extensive comparisons between
different lightweight Kubernetes distributions. In [8] a comparison between MicroK8s and K3s is
executed. The paper concluded that K3s has better performance. In [15] the authors evaluate
the performance of three different Kubernetes distributions: full-fledged Kubernetes, K3s, and Mi-
croK8s. The results demonstrate that both K3s and MicroK8s have not only managed to reduce
the deployment time and complexity but have also improved performance. In [16] a comparison
of MicroK8s, K3s, k0s, and MicroShift distributions is realised, by investigating their minimal re-
source usage as well as control plane and data plane performance in stress scenarios. In stress
scenarios, K3s and k0s marginally showed the highest control plane throughput compared to the
others.

Regarding the compatibility aspect, the Vehicle OBU utilised in the CONNECT scenarios can
support the K3s distribution, therefore this distribution is preferable against the others. More
information on these aspects will be presented in details in deliverable D6.1.

Regarding the third aspect, ICCS (WP leader) is leading the development of the kubernetes
cluster that will support CONNECT and has extensive experience with the majority of these dis-
tributions. Hence, we conclude on the utilization of K3s that is a certified Kubernetes distribution
designed for production workloads in unattended, resource-constrained, remote locations, as the
CONNECT orchestration platform.

3.1.2 K3s Overview

In detail, K3s was released by Rancher in 2019 and then acquired by SuSE in 2020. The team
behind K3s wanted an installation of Kubernetes that was half the size in terms of memory foot-
print. In this direction, Rancher has packaged K3s as a single binary (approx. 65 MB) with basic
K8s components. Thus, it does not require a package manager for installation and is independent
of any particular Linux distribution. It is fully compliant to K8s, contains all basic components by
default, and targets a fast, simple, and efficient way to provide a highly available and fault tol-
erant cluster to a set of nodes. K3s replaced etcd by another datastore, the sqlite3 which is far
more lightweight. K3s tries to lower the memory footprint by a reorganization of the control plane
components in the cluster. The K3s master and workers, also called server and agents, encap-
sulate all the components in one single process. It is written in Go and has a reported memory
footprint of 512 MB RAM, with the developers recommending at least having 1 GB of RAM for
regular deployments and 4 GB of RAM for high availability installations [16]. Based on the paper
in [16] which compares different lightweight Kubernetes distribution, it is by far the most popular
lightweight K8s distribution with more than 20,000 stars and over 1700 contributors on Github.
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3.1.3 K3s Architecture

The high-level architecture of K3s is illustrated in Figure 3.1. All the three figures of this subsection
are coming from the original on-line K3s documentation and present the architecture and most
common configurations of K3s distribution. The main building blocks of the K3s architecture are
the Server and the Agent, similarly to the building blocks of Kubernetes which are the Master
node and Worker node. In the K3s deployment illustrated in Figure 3.1, we assume one K3s
Server and one K3s Agent. In this section an overview of the K3s distribution is presented. The
detailed description of the modules illustrated in Figure 3.1 is presented in section 3.2.2.

Figure 3.1: K3s Architecture

A K3s Server and a K3s Agent communicate through a proxy called Tunnel Proxy as depicted in
Figure 3.1. The first interaction is initiated from the K3s Agent (i.e., so as to add the agent/work
node to the cluster) which communicates with the K3s Server and sets up the tunnel. All data ex-
changed between Server and Agent are realized through this Tunnel Proxy, which is responsible
for establishing the connectivity between the appropriate ports that facilitate the relevant control
plane functionalities of the cluster.

In the Kubernetes case, the Kube Proxy uses several ports to get connected with API-Server,
but in the K3s case the Kube Proxy gets connected with API-Server using the Tunnel Proxy. In
detail, the Tunnel Proxy creates a unidirectional connection toward the API-Server. Then since
this link is established, a bidirectional communication is realised. In this way, a single port is used
for connectivity between the elements, making the connectivity more secure.

In Kubernetes the etcd component is used, which is a consistent and highly-available key value
store used as Kubernetes’ backing store for all cluster data. In the K3s case the etcd is replaced
by an SQLite database. Even better, the Kine can be used in K3s, which is a datastore that allows
etcd to be replaced with other databases (e.g. MySQL, PostgreSQL, SQLite, and more). It acts

Distributed Processing, Fast Offloading and MEC-enabled Orchestrator Page 12 of 56



CONNECT D5.2

as a translation layer that allows K3s to use these databases, instead of etcd that is used in full
kubernetes.

Similar to the Kubernetes case, K3s uses Kubelet. In practice Kubelet is an agent that runs on
each node in the cluster. Kubelet makes sure that containers are running in a Pod (which in
simple terms, is an abstraction layer1 introduced in kubernetes, to be agnostic to the container
technology used for building the container image, e.g., docker, linux container or other). In addi-
tion, the kubelet takes a set of Pod specifications that are provided through various mechanisms
and ensures that the containers described in those specifications are running and healthy.

In K3s, as in a typical K8s cluster, network plugins are used (e.g., Flannel), which act as a
container network interface (CNI) for cluster networking inside the K3s environment. Flannel in-
teracts with Kubelet and also with Kube Proxy. In both Kubernetes and K3s, the container runtime
is tasked with the life cycle management operations of the host nodes and their workload, i.e.,
their containers. Kubernetes support various implementations for the container runtime module
including Containerd and CRI-O. In the Kubernetes case, all the components are running in dif-
ferent processes, while in K3s case, all the aforementioned components run together as a single
process which makes it really lightweight.

In Figure 3.2 a K3s cluster case is illustrated in which a single K3s Server is connected to a
set of K3s Agents. As illustrated in the figure, the K3s embedded SQLite database is used for
storing all the information related with the K3s operations. In this configuration, each agent node
is registered to the same server node. The management of the K3s resources can be realized by
a user through the K3s API exposed on the server node.

Figure 3.2: K3s Architecture – Single Server, Multiple Agents

For the needs of the CONNECT project and the defined Use Cases, in which the deployment
of services is foreseen for three different locations: cloud, MEC, vehicle, the aforementioned
K3s deployment and configuration is adequate to fulfill the requirements. Therefore, the above

1https://kubernetes.io/docs/concepts/workloads/pods/
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configuration will be used for all the related Use Cases. More information will be provided in the
next sections.

3.2 Securing Application Containers Technology in the CON-
NECT set-up

Prior to the description of the building phase of the confidential containers that follows in Sec-
tion 3.2.1, we provide some further details on the LCM operations in kubernetes that are facili-
tated through the container runtime (and its breakdown in various smaller modules, namely runc,
shim and containerd), as they also play a crucial role in the building phase of the CONNECT con-
tainers. Particularly, runc is a powerfull tool for spawning and running containers according to the
OCI (Open Container Interface). It is the default runtime for Docker and containerd, and is respon-
sible for the actual running of the containers. In this context, shim is a small intermediary program
that sits between the container runtime (e.g., containerd) and the actual container process. Its
main purpose is to handle certain aspects of the container’s lifecycle and state management.

Putting these together, shim-runc in containerd, refers to the shim layer that interfaces with runc,
the lower-level container runtime. It helps in managing container processes in a way that en-
hances the overall functionality and stability of the container ecosystem. For instance, it allows
containerd to restart without interrupting running containers, manage resource limits, facilitate
better isolation and resource management, and handle logging and monitoring at a granular
level.

Overall, this design where shim acts as an intermediary between containerd and runc ensures
that the container runtime does not directly interact with the container processes, providing a
cleaner, more modular architecture that enhances maintainability and reliability for container man-
agement, aligning with the industry standards set by the OCI.

In the following sections we emphasize on the procedures for building confidential containers
(Section 3.2.1), the CONNECT nodes that are controlled by the K3s orchestrator (Section 3.2.2),
as well as on the description of a simple example of a service/container instantiation (Sec-
tion 3.2.3).

3.2.1 Building the CONNECT (K3s) Confidential Containers

The first step toward enabling K3s to create and manage confidential containers is the deployment
of Enclave-CC in the K3s cluster. During this operation, shim-runc and containerd binaries are
copied into K3s nodes, while the needed images (Agent enclave container and the Boot emty
enclave container) are added in the image registry. In addition, containerd is configured to enable
Enclave-CC run-time [27].

Then the user can deploy a new application (e.g. CCAM application) in the K3s cluster. For this,
the user needs to define the Pod configuration in a set of manifest files. When the user makes a
new request to the K3s APIServer, this request is forwarded to the shim-runc tool located in the
containerd module. Then the shim-runc tool creates the Agent enclave container and requests
from this container to pull the encrypted container image of the required application from the
image registry.
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When the Agent enclave container completes the download of the encrypted application image
it needs to verify it. In this direction, the Agent enclave performs a remote attestation with the
trusted Key Broker Service, which verifies the identity and trustworthiness of the Agent enclave
and confirms the correctness of the downloaded image. In addition, the encryption key of the
image is delivered. Then Agent enclave decrypts the received application image, encrypts again
using a randomly-generated local key and based on the image it constructs a new encrypted file
system.

In parallel, shim-runc creates the application enclave container and starts the Gramine instance
(see details on the Gramine OS library in D4.2), which performs the initial enclave boot-up. When
this process is completed, the application enclave container receives a local attestation request
from the Agent enclave. During this local attestation process, the application enclave container
receives the encrypted file system, moves it inside the enclave, decrypts it and installs it as the
Gramine file system. Therefore, the application can be finally executed inside Gramine.

3.2.2 K3s in CONNECT: Cloud, MEC and vehicle nodes

As explained in the previous paragraphs the CONNECT orchestrator will be developed on top the
Kubernetes container orchestration platform and specifically on top of its lightweight distribution
called K3s. In Figure 3.3 the overall CONNECT orchestration solution is presented.

Figure 3.3: CONNECT orchestration solution

As illustrated in Figure 3.3, the CONNECT platform involves a Cloud node which serves as the
Master/server node and a set of worker/agent nodes located on the MEC and in vehicles. In
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practice each vehicle includes one worker node, while each MEC may support one or several
worker nodes based on the actual requirements. Figure 3.3 presents the case which includes
one Cloud node (Cloud Backend), one MEC node (MEC-A) and one Vehicle node (Vehicle-A).

In the ideal scenario we assume that the vehicle worker node is equipped with capabilities for
supporting HW-protected application containers. In that case, the vehicle node is like the worker
node in the MEC. If this assumption needs to be relaxed, we resort to software-based trusted
execution environments (e.g., Gramine OS) for the vehicle node.

The main innovations of the CONNECT orchestration solution are: a) the realisation of the actual
deployment of confidential containers in an operational (automotive) environment; b) the perfor-
mance evaluation of actual automotive applications (e.g. CCAM) in the CONNECT environment.
Regarding the latter, a set of evaluation scenarios are under discussion. These scenarios will be
executed, while the results will be analysed and presented in the deliverable D5.3.

It is important to stress that at installation, K3s generates a self-signed CA to set up identities for
each component in the cluster (as illustrated in Figure 3.4). This CA is then used to sign other
certificates used within the cluster. We can discriminate between Server certificates and Client
certificates described below:

• Server certificates: K3s generates a certificate for the server, which is used by the Ku-
bernetes API server (this is signed by the CA). The API server certificate ensures secure
communication within the cluster and for any external access to the cluster’s API.

• Client certificates: K3s also generates various client certificates that are used by different
K3s components to securely communicate with the API server. For example, the kubelet,
the primary node agent running on each node, receives a client certificate to authenticate
itself to the API server.

Figure 3.4: K3s generation of self-signed CA

In the rest of this subsection the main K3s components of the presented CONNECT orchestration
solution are presented in detail. The figure and the description of certain components presented
in the subsection is necessarily the same to that presented in D4.2.

API server

The API server is the interface through which all the operations and communications within a
Kubernetes cluster are conducted. The API provides the mechanisms for creating, modifying,
managing, and deleting resources (e.g., Pods, services, volumes and namespaces). It defines a
set of RESTful endpoints for each type of resource, allowing for CRUD (Create, Read, Update,
Delete) operations.

In this regard, each component in a Kubernetes cluster, including the Scheduler, Kubelet, Con-
troller Manager, and others, acts as an HTTP client to the API server. They use standard HTTP
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methods to query, update, create, and delete Kubernetes resources, thereby managing the state
and operation of the cluster

Additionally, for watching resources (like the Scheduler watching for new Pods), Kubernetes often
uses a mechanism like WebSockets or long polling with HTTP GET requests. This allows the
Scheduler to maintain a persistent connection to receive real-time updates about the state of
resources.

Kubelet

Kubelet is a kubernetes component that is present in all nodes and facilitates multiple interactions
between master nodes and work nodes. Via the API servers and kubelet, nodes are registered
(or deregistered) to the cluster as worker nodes. This process includes reporting various details
about the node, like its resources (CPU, Storage, memory, etc.), supported features, and health
status. Specifications of services and deployments are passed to kubelet via the API server.
These specifications describe the containers that need to be run, along with their configurations
and interactions with other Pods and services.

In coordination with the container runtime (e.g., containerd, docker, cri-o) kubelet manages the
lifecycle of Pods (such as instantiation, termination, modification) and containers within them,
whereas in conjunction with the network plugin (e.g., flannel, calico, etc.), kubelet sets up and
manages the network for the Pods, ensuring they can communicate with each other and with
other components in the cluster (within the same or different nodes).

Finally, kubelet also monitors the resource usage of containers (and of the nodes that host them)
and reports this information back to the API server. This data is used for scheduling decisions, to
ensure that resource limits are enforced, to perform various health checks as well as to have de-
ployments and services running at their desired state, i.e., as intended and defined by the service
manifest. The described functionalities (along with the procedure for building confidential contain-
ers, see Sec. 3.2.1) realize the relevant lifecycle management (LCM) operations of CONNECT
containerized applications.

Scheduler

The scheduler is responsible for assigning Pods to nodes. It makes these decisions based on
several factors such as resource availability (this includes CPU/GPU, memory, Storage) and other
custom requirements, e.g., network interface card types, constraints specified in the Pod config-
uration (like node selectors and affinity/anti-affinity rules), and other policies (e.g., load balancing
at the host level). It works closely with the API server and considers a variety of factors and
policies to maintain the desired state and performance of the cluster. In brief, it operates as the
resource orchestrator (RO) of the cluster (see the end-to-end architecture of the CONNECT K8s
cluster at D2.1), selecting nodes capable of hosting the workload of containerized applications,
taking also into account the cluster policies and constraints.

Controller Manager

The Controller Manager runs various controllers, each responsible for specific aspects of cluster
management. These include the Node Controller, Job Controller, Endpoints Controller, Service
Account and Token Controllers, and others. These controllers watch the state of the cluster
through the Kubernetes API and make changes attempting to move the current state towards the
desired state. For instance, if the manifest of the service dictates that the deployment should be
composed of two Pods (e.g., replicaset 2), and one of the Pods fails, the controller manager will
detect the failure and try to deploy a new Pod to reach the desired state of the deployment, i.e., 2
Pods.

Distributed Processing, Fast Offloading and MEC-enabled Orchestrator Page 17 of 56



CONNECT D5.2

To detect such changes, maintain the desired state, and remedy cases of failure, the Controller
Manager works primarily with the Kubernetes API Server continuously watching for changes in
various objects, and works to reconcile any differences between the observed state and the
desired state. The API Server, in turn, interfaces with Kine (cf. next subsection) to store or
retrieve this state information from the backend database service.

Kube-proxy

The primary function of kube-proxy is to maintain network rules on nodes and it works in coor-
dination with Kubernetes network plugins such as flannel, calico, etc. These rules allow network
communication to Pods from network sessions inside or outside of the cluster. We can abstract it
in general as a routing table, with mechanism to monitor and oversee these rules and changes.
Hence, these rules allow network traffic to be directed to the appropriate Pods based on the
service IP and port.

Kube-proxy also performs basic load balancing. When a service is created to represent a set of
Pods, kube-proxy sets up routes so that the service IP is directed to one of these Pods. It can
distribute network traffic to Pods using round-robin and other routing methods.

Flannel

Flannel is a container network interface (CNI) plugin. When a Pod is created, the Kubelet works
with the network plugins (like flannel, calico, etc.) to allocate a network interface for the Pod,
assign IP addresses, and set up the necessary routes so that Pods can communicate with each
other.

Kine in K3s

Kine is a datastore shim that allows etcd to be replaced with other databases. K3s supports
MySQL, PostgreSQL, SQLite, and more, for storing cluster data. It acts as a translation layer
that allows K3s to use these databases, instead of etcd that is used in full kubernetes clusters.
Generally, it provides storage backend flexibility, helping to make Kubernetes accessible and
practical for a broader range of environments and use cases, especially where resources are
limited or simplicity is a priority. It is important to note that Kine translates and structures the data
in a way that is compatible with the Kubernetes API’s expectations. This ensures that, regardless
of the underlying database technology, the data is managed in a consistent and reliable manner,
as per Kubernetes standards.

Kine database system accommodates all cluster state data. This encompasses all information
about the current state of the cluster. It includes details about Kubernetes resources such as
Pods, services, deployments, statefulsets, and daemonsets, as well as information about the
state of the worker nodes (resource availability, health status etc.). It also stores information
about users, roles, and role bindings, which are crucial for access control and permissions within
the cluster, as well as data related to the scheduling and orchestration of containers, such as Pod
status (e.g., crushed, pending, available), events, and logs.

Such data are essential for the Kubernetes master node (control plane) to manage and orches-
trate the cluster. Via Kine and the API server, all other Kubernetes components (kubelet, sched-
uler, controller manager) retrieve information with respect to the cluster state, and perform their
associated functionalities. Although Kine itself doesn’t manage keys, it plays a role in storing
them. In this regard Kubernetes secrets (applying encryption of secrets at rest) that Kine stores
include passwords, OAuth tokens, SSH keys and service account tokens. The latter are used for
authenticating applications or users for accessing the Kubernetes API.

Tunnel proxy
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One of the primary roles of the tunnel proxy in K3s is to enable communication between the con-
trol plane (server/master nodes) and the worker/agent nodes. It facilitates secure and efficient
communication within the cluster, especially in environments where direct network connections
between nodes are restricted (behind NAT or in different network segments, etc.). It basically tun-
nels traffic from control and worker nodes (facilitating the communication between all Kubernetes
components). It is not a mandatory K3s element, but it adds to extra security. By tunneling traffic,
it can help ensure that the data transmitted across the cluster is encrypted and protected from
external threats, which is vital in maintaining the overall security of the cluster.

Supervisor in K3s

In K3s the supervisor is in close collaboration with the API-server, and these two components can
be collocated (same host), or not. Essentially the supervisor functions as a relay of information
(e.g., a load balancer) between the K3s agents (worker nodes) and the control plane functionali-
ties of the K3s server (master node). The information is exchanged between the Tunnel Proxy of
each agent and the supervisor of the server. In addition, the supervisor plays the role of an added
layer which acts as an intermediate firewall for enhancing security for in-cluster communications.

At the initial phase, a websocket connection is created in order for worker nodes to initiate the
node/agent registration process. Subsequently, K3s agents connect to the supervisor (and kube-
apiserver) via the local load-balancer, retrieving a list of available service connect endpoints. The
agent retrieves a list of kube-apiserver addresses from the Kubernetes service endpoint list in
the default namespace. Those endpoints are added to the load balancer, which then maintains
stable connections to all servers in the cluster (high availability cluster), providing a connection to
the kube-apiserver that tolerates outages of individual servers.

3.2.3 CONNECT Confidential Containers Flow

In Figure 3.5 the whole process for the instantiation of a service (e.g. CCAM application) is
presented. As explained in the previous section, this container is not regular, but it is enhanced
to be a confidential container by utilising the capabilities of Gramine and Enclave-CC. The steps
of the flow, which are described in detail below, they are in line with the K3s details provided
previously and the approach described in D4.2.
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Figure 3.5: Service instantiation in confidential containers

The process of instantiating confidential containers in CONNECT involves multiple components
interacting with each other, for the deployment of the service workloads at particular node(s)
within the cluster (e.g., to the CONNECT MEC nodes), to apply the Enclave-CC approach and
execute application inside a Gramine environment. The process begins with a user (or an auto-
mated system) creating a deployment through the K3s API server. This is typically done using
kubectl, the Kubernetes command-line tool, to submit a YAML file (or a set of manifest files) that
describes the desired state of container services, or via a kubernetes package manager such as
helm3, that helps streamline the deployment and management of Kubernetes applications.

The API server submits the new deployment to Kine (i.e., the translation layer between Kuber-
netes and the underlying database), along with its status (e.g., new assignment, pending for de-
ployment). The scheduler constantly watches the API server for new work items (Pods that need
to be assigned to a cluster node). Once a new assignment is found, the scheduler queries the API
server to gather current data about the state of the cluster. This includes information about the
resources available on each node, such as CPU, memory and storage, affinities, anti-affinities,
taints, tolerations and other scheduling constraints that are defined in the Pod’s specification or
the cluster’s policies. The scheduler uses this information, as the K8s resource orchestrator (RO),
to evaluate which nodes have sufficient resources to run the Pod. Once a node is selected, the
RO communicates back to the API server to bind the Pod to the chosen node, and API server
updates the Pod’s information in Kine to reflect this binding.

Through the tunnel proxy, the kubelet agents at each worker node are continuously watching the
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API server for Pod bindings. Once a kubelet detects that a new Pod assignment is destined for its
node, it interacts with the container runtime engine (e.g., docker, containerd, cri-o) to prepare for
container deployment. Particularly, Kubelet passes the container image, environment variables,
volumes, and other necessary information (based on the K3s service manifest) to the container
runtime, e.g., containerd. Subsequently, containerd pulls the container image from the image
registry (or uses a local copy if available/instructed). After the image is pulled, containerd creates
the container based on the specifications provided by the service manifest files.

Additionally, the kube-proxy and the network plugin (e.g., flannel) create the necessary virtual
networks to establish communication between different Pods (potentially across hosts) or for Pod
communication with services outside the cluster.

As explained in section 3.2.1, containerd utilises the functionalities of shim-runc tool. The shim-
runc tool creates the Agent enclave container and application enclave container and starts the
Gramine instance, which performs the initial enclave boot-up (see Figure 3.5). The shim-runc
tool requests from Agent enclave container to pull the encrypted container image of the required
application from the image registry. Then, the Agent enclave performs a remote attestation with
the trusted Key Broker Service to validated the received image. The Agent enclave based on
the image it constructs a new encrypted file system. Finally, the application enclave container
receives a local attestation request from the Agent enclave and receives the encrypted file sys-
tem to be installed in the Gramine file system. Therefore, the application is executed inside the
confidential container.

Once the confidential container is running, containerd continues to manage its lifecycle and re-
ports the status back to the kubelet. The kubelet updates the status of the Pod in the API server,
which in turn updates the overall deployment status in Kine. This status information is also con-
stantly monitored by the controller manager which performs automated health checks and ad-
justments when needed, to ensure that the desired state declared by the user in the deployment
phase, is achieved and maintained.

3.3 CONNECT Orchestrator in Lab Environment

In the preceding sections, we outlined a comprehensive architecture based on K3s, and and array
of components necessary to meet CONNECT’s objectives. It’s important to note that a significant
portion of this architecture and the associated services have undergone rigorous testing within a
controlled laboratory environment at the ICCS premises. Particularly, we have an operational K3s
cluster, including a master node and a set of worker nodes were we build confidential containers
(as described in Section 3.2.1), deploy them in relevant worker nodes, validate and benchmark
the relevant RO and LCM operations.

To facilitate the cellular connectivity between the worker nodes and the master node, we utilize
the ICCS 5G testbed, and particularly Amarisoft2 solution for 5G connectivity. This setup allows
the creation of a K3s cluster under real operating conditions, with 5G connectivity for testing all
relevant operations. Figures 3.6 and 3.7 depict the 5G New Radio (NR) basestation, the worker
node that hosts CONNECT services and application workloads, and the master node that resides
at the ICCS servers. The interconnection of the worker node towards the master node (i.e., the
5G link) is facilitated via Teltonika’s RUTX50 Industrial 5G router3, also depicted in Figure 3.6.

2https://www.amarisoft.com/
3https://teltonika-networks.com/products/routers/rutx50
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Hence, the K3s worker node is connected to the 5G network, which is sequentially connected via
an Ethernet connection to the K3s master node, residing at the ICCS rack server depicted in 3.7

Figure 3.6: K3s worker node and Private 5G network at ICCS premises.
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Figure 3.7: K3s master node hosted at ICCS servers.

The local setup at the ICCS 5G testbed serves as a first step towards identifying and addressing
potential issues, ensuring that the discussed architecture and the CONNECT view is practically
viable and ready for broader implementation and WP6 integration and real-world demonstration
(see SMTD use-case in D2.1).

Figure 3.8 showcases the control plane functionalities of the the K3s master node and the relevant
K3s services at the ICCS testbed, based on the kubectl commandline tool.
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Figure 3.8: K3s master node services for LCM support of cluster operations.

In our setup, we perform various preliminary tests to benchmark the computation tasks on the ve-
hicle, i.e., the T1 time presented in Section 2 which refers to the (CCAM) service processing and
trust computation delay. Similarly, the ICCS rack servers (added as K3s worker nodes) will serve
as the testing ground for benchmarking T3 and the computation at the infrastructure side (see
Section 2). This on-going benchmark will not only provide us with a detailed understanding of our
system’s capabilities and limitations (focusing on CONNECT services) but has also established a
solid foundation for future developments. Importantly, the insights garnered from this benchmark
will be instrumental in the CONNECT task offloading service (see Section 2 and Section 3.4).

Other features so far tested at the ICCS 5G testbed, is the potential overhead of LCM opera-
tions (e.g., creation, instantiation, modification, termination) on graminized CONNECT confiden-
tial containers (see Deliverable 4.2, Section 5) and their easy-to-use and seamless integration
with K3s orchestrator.

Building upon the successful laboratory testing, the next step in our project’s progression in-
volves the integration of the K3s systems (worker and master node) at the pilot site, where the
demonstrator phase is set to occur. The K3s cluster will be further tasked to orchestrate various
CONNECT components (e.g., TAF, CCAM service containers, confidential containers, etc.) and
demonstrate part of the CONNECT vision. Hence, the SMTD use-case pilot site will serve as a
proving ground, allowing us to fine-tune the systems based on practical experience gained from
in-lab experimentation in order to efficiently support the forthcoming WP6 (SMTD) demonstrator.

3.4 Towards the CONNECT task-offloading realisation

The aforementioned CONNECT technology will find direct application to the Slow Moving Traffic
Detection (SMTD) use-case (see D2.1). More importantly, the SMTD use-case will be realised
and demonstrated in a real-world road environment.

As part of this use-case, the task offloading capability, secured by the CONNECT mechanisms
and highlighted in Section 2.3 (as open research questions for experimentation), will be shown.
Towards that end, the project will need to introduce in the coming D6.1:
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• an offloading scenario to be coherently coupled with the SMTD use-case semantics. The
scenario should allow the project realise and experimentally evaluate the involved trade-offs
(i.e., basically the impact of the CONNECT TAF/trust mechanisms deployed in confidential
containers, over the involved end-to-end service delays)

• the aforementioned introduced task-offloading scenario should be integrated into/ sup-
ported by the CONNECT vehicle platform. Potential needs for dedicated HW/SW set-up,
closely related to the SMTD case, should be also fulfilled.

• finally, the aforementioned technology for the deployment of confidential containers should
be complemented with sensing/telemetry tools which would collect all required data to fa-
cilitate the relevant offloading decisions (see Section 2.3)

All the above directions will be introduced and clearly presented in the ’Use Case Analysis’ part
of the D6.1.
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Chapter 4

The CONNECT Blockchain Infrastructure
for Auditability

4.1 The Blockchain motivation in CONNECT

The adoption of the Distributed Ledger Technology (DLT) in the CONNECT system is crucial,
since it brings forward in a decentralized manner, trusted and secure data operations that ensure
the auditability and trustworthiness of the wide range of transactions performed in CONNECT,
hence enhancing its reputation [25]. The CONNECT DLT enables the storage of critical data
such as trust models and attestation evidence within the CONNECT system, while supporting
access policies that restrict access to the stored information.

The intrinsic decentralized and secure nature of DLT not only ensures auditability, but also fa-
cilitates the monitoring of trustworthiness evidence, particularly from the attestation processes,
resulting in the establishment of a historical trust record for any component participating in the
CONNECT system. Hence, any authenticated and authorized entity is able to verify the current
state of a component. Moreover, by leveraging the historical trust data stored on the DLT, fur-
ther sophisticated trust assessments can be performed towards establishing a reputation system
in CONNECT. By prohibiting access to unauthorized entities through the application of ABAC
(Attribute-Based Access Control) and ABE (Attribute-Based Encryption) mechanisms (see also
Section 5), the CONNECT DLT safeguards the calculation of RTLs and ATLs in the system and
ensures that they will not be tampered with, therefore boosting the security and trustfulness of
operations in CONNECT.

The importance of CONNECT DLT lies on the need for provenance, as the attestation evidence
stored in the Blockchain legders is essential information that is consumed by the OEM, which
processes the attestation raw traces towards discovering new vulnerabilities in the CONNECT
system. Furthermore, in the context of trust assessment processes, the CONNECT DLT can
provide a kind of mechanism for the emulation of a trust system, as it stores the trust opinions
that can be used for the establishment of reputation in CONNECT components. It has to be
mentioned that although theoretically there could be other means of storing attestation evidence
and trust models in CONNECT, the fact that in CONNECT system such data may be needed by
various sources like CCAM certificates, enhances the need for the application of DLT that en-
sures security and trustfulness of stored data along with strong authentication and authorization
mechanisms.
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4.2 The Blockchain architecture and the CONNECT approach

4.2.1 Overview on Blockchain technologies for CONNECT needs

In order to decide upon the most suitable BC technology for the needs of CONNECT, a state-of-
the-art review is presented below. A focus has been given on Hyperledger Fabric, Hyperledger
Besu and Ethereum as they are the best candidates based on the following CONNECT DLT
design criteria: (a) scalability, (b) strong authentication and access control, (c) extendability.

Hyperledger Fabric

This is a permissioned Blockchain platform developed by the Linux Foundation’s Hyperledger
project, designed for enterprise use cases, providing a modular and customizable architecture.
Hyperledger Fabric (HLF) supports various consensus mechanisms, including Practical Byzan-
tine Fault Tolerance (PBFT). This flexibility allows organizations to choose the consensus al-
gorithm that best fits their requirements. HLF supports smart contracts known as chaincode,
which can be written in languages such as Go or Java. HLF allows for fine-grained control over
permissions and privacy, where participants can be granted specific access rights to data and
transactions [6].

Hyperledger Besu

This is another project under the Hyperledger umbrella, specifically developed for enterprise
Blockchain applications. It is an Ethereum client that supports both public and private network de-
ployments. Hyperledger Besu supports various consensus mechanisms, such as Proof of Work
(PoW) and Proof of Authority (PoA). Hyperledger Besu is Ethereum Virtual Machine (EVM) com-
patible, which means it can run Ethereum smart contracts. This feature makes it interoperable
with existing Ethereum tools and applications. Like HLF, Hyperledger Besu allows for privacy and
permissioning features. It enables organizations to set up private networks with controlled access
to participants [11].

Ethereum

This is an open-source, decentralized and permissionless Blockchain platform that enables the
creation and execution of smart contracts and decentralized applications (DApps), officially launched
in 2015. Ethereum uses a Proof of Stake (PoS) consensus mechanism called the Beacon Chain
for its Ethereum 2.0 upgrade, enabling scalability, security, and energy efficiency. Ethereum has
introduced the concept of smart contracts, having the terms of the agreement directly written into
code. Solidity is the primary programming language for Ethereum smart contracts [23].

Selection of HLF for CONNECT DLT

As the nature of the CONNECT system demands a very strong level of security and trust, a per-
missioned Blockchain technology is the obvious choice. Between the two Hyperledger projects,
HLF has been selected in CONNECT for several reasons [13]. Primarily, HLF is well-recognised
for its stronger access control compared to Besu, having more robust certificate and identity man-
agement mechanisms. More specifically, unlike Besu, HLF has its own Certification Authority. In
terms of modularity, HLF is designed with a modular and extensible architecture that allows more
flexibility in customizing the Blockchain network over Besu. Also, as Besu supports primarily the
PoW consensus algorithm, which is considered less energy-efficient than some other consensus
mechanisms, especially for private or consortium networks, HLF is the better choice. Regarding
privacy, HLF provides a more structured way to manage privacy and confidentiality in multi-party
scenarios. For smart contracts language, Hyperledger Besu primarily supports Solidity, while the
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multilingual support in HLF is an advantage for CONNECT development and integration activi-
ties. Moreover, HLF’s exclusive focus on permissioned networks makes it more straightforward
with specific privacy and governance requirements. Nevertheless, it has to be mentioned that
CONNECT can be agnostic to Blockchain Ledgers and as such it is not tightly linked with HLF,
but HLF has been an excellent selection for instantiating the schemes for better authentication,
authorization and integration of cryptoprimitive mechanisms in CONNECT.

4.2.2 Architecture

As described in detail in D2.1 [10], the flow of actions in the CONNECT DLT includes two phases,
namely the setup and the runtime. During the setup phase, the trust models, RTLs and trust
policies coming from the TAM are deployed onto the DLT, as well as the registration of the TAF
Agents - both on the MEC and the vehicle sides - is performed to get automatically notified in
case of upgrades. These trust models, policies and RTLs that reside within the Private Ledger,
are only accessible to authorized entities through the operation of the Blockchain Peers. During
the runtime phase, failed attestation evidence is recorded onto the DLT, either for the MEC or the
CCAM services and the vulnerabilities are identified by the corresponding security administrators
and OEMs. Upon recognition of new vulnerabilities, the TAM with the assistance of RA (Risk
Assessment), recalculates the RTLs. Within the CONNECT DLT, no personally identifiable infor-
mation (PII), such as location or other sensitive data, are stored. Only low-level system traces
derived from the attestation processes are stored. As these traces contain sensitive informa-
tion, Attribute-based Encryption (ABE) and Attribute-based Access Control (ABAC) ensure that
non-authorised users will not access such information, while data sovereignty is further boosted
utilizing Self Sovereign Identity (SSI) concepts. The CONNECT DLT comprises the following
internal components, as depicted in Figure 4.1:

Figure 4.1: CONNECT DLT Architecture

Blockchain Peer
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A Blockchain Peer represents an essential component within the CONNECT DLT network, as it
hosts the chaincode responsible for executing smart contract functions and manages the ledger
where transaction information is recorded. A BC Peer communicates with the TAM, OEM and
TAF agents (MEC and vehicle sides) for the secure recording and retrieval of information, such
as trust models and attestation evidence in the CONNECT Private Ledger. This collaboration
supports the execution of smart contracts that are written in DLT. The BC Peers, which run in-
dependently of each other and maintain their own copy of the Private Ledger, play a pivotal role
in the CONNECT DLT, serving as integral components that conduct operations, maintain ledgers
and actively participate in consensus schemes. These schemes are crucial for processing trans-
actions and securely incorporating them into the Blockchain. In CONNECT, the design choice
is to not have strictly one BC Peer per vehicle, but to maintain a suitable number of BC Peers
that will enable the smooth operation of DLT processes. The optimal number of BC peers for
supporting a variety of vehicles will be documented in the deliverables D6.1 and D6.2 under WP6
evaluation activities.

Chaincode Service

The Chaincode Service comprises the execution engine responsible for the various smart con-
tracts deployed across different peers that perform the data transactions in CONNECT DLT. The
Chaincode Component handles operations directed by the Security Context Broker regarding
the creation and deployment of smart contracts containing attestation evidence and trust mod-
els/policies. The API layer of the different peers transfer the input to the chaincode service.

Ordering Service

The Ordering Service is employed in CONNECT DLT to coordinate transactions sequentially and
construct new blocks in the Blockchain. When a transaction (e.g. storage of data in the Private
Ledger) is transmitted by a CONNECT component (e.g. MEC) to a peer via the API layer, the
peer validates and executes the transaction and returns the results to that component. The peer
subsequently submits another transaction containing these results to an Ordering Service. As nu-
merous transactions are sent to the Ordering Service, it aggregates them into blocks. Given that
there can be multiple Ordering Services, each receiving transactions from different peers, col-
laboration is established between them to organize transactions and formulate them into blocks
of the ledger. Consensus algorithms ensure unanimous agreement on the exact order of trans-
action blocks. Once consensus is achieved, a distinct order is established and transactions are
consolidated into blocks, which are stored onto the ledgers of the peers.

Security Context Broker

The Security Context Broker (SCB) comprises a trusted intermediary connecting the Blockchain
network with the rest of the CONNECT system (see also the flow in Figure 4.4). Its main re-
sponsibility lies in overseeing the creation and deployment of smart contracts on the ledger. The
SCB translates the data transactions, as received by the peers, into smart contract logic and
subsequently deploys the smart contracts onto the ledger. Moreover, access to and querying of
specific attestation evidences or trust models/policies are restricted by the SCB to components
possessing the necessary attributes, through the application of Attribute-based Access Control
(ABAC) mechanisms (see also Section 5.1). Apart from its interaction with the peers, the SCB
also communicates with the off-chain storage of CONNECT DLT for storing and retrieval of actual
transaction data that are not stored in the Private Ledger due to their sensitive nature or large
size.

API Layer

The API layer enables the communication and interaction between external entities (e.g., CON-

Distributed Processing, Fast Offloading and MEC-enabled Orchestrator Page 29 of 56



CONNECT D5.2

NECT components, OEM) and the DLT (see also the flow in Figure 4.4). The API Layer exposes
the interfaces that are invoked by external entities, guiding the communication between the BC
Peers and the SCB. Through the utilization of the API layer, the integration with smart contracts
is enabled for the facilitation of transactions and the recording/retrieval of data. Moreover, the
API layer contributes to the finalization of transactions before they are forwarded to the Ordering
Service, by facilitating the organization of essential transaction details prior their submission to
the Ordering Service towards their storage in CONNECT DLT.

Off-chain Storage

The Off-chain Storage comprises the storage of ABE-encrypted data that cannot be stored di-
rectly on the DLT network due to their sensitive nature or large size, while their corresponding
pointers are stored in the Private Ledger maintaining the location of the stored data. These
pointers are encrypted with ABE mechanisms for safeguarding security of information in CON-
NECT, as only authorised access is allowed to CONNECT components, such as MEC, through
interaction with the Security Context Broker and application of ABAC policies.

Private Ledger

The Private Ledger stores the hashes of the smart contracts that have been executed regarding
the recording/retrieval of attestation evidence or trust model/policy, and the corresponding point-
ers to the encrypted off-chain data to ensure the fast performance of the ledger. The hashes
are provided by the CONNECT components as input to specific smart contracts through the API
Layer. The pointers to the data stored in the Off-chain Storage are provided by the Security
Context Broker that facilitates the storage of the encrypted data to the database of CONNECT
DLT.

4.3 Blockchain data requirements

Based on the motivation exploiting the Blockchain technology in CONNECT, a set of dedicated
requirements has been defined towards the design of CONNECT DLT and its subsequent devel-
opment in the next phase of the project.

These requirements facilitate the lifecycle of the two distinct data flows in CONNECT: (a) the
management of attestation data and (b) the management of trust policies/models and RTLs.
More specifically, at first, a general group of requirements that cover the full data lifecycle of
CONNECT DLT operations is described in Table 4.1.

Then, different sets of specific requirements focusing on certain aspects of CONNECT DLT are
defined, delving into further details in DLT features, namely:

• Confidentiality and integrity: This aspect is related with the CONNECT DLT mechanisms
for secure storage and immutability of information (Table 4.2),

• Authorisation and access control: This aspect refers to the leverage of Verifiable Credentials
and access control mechanisms in CONNECT DLT as also mentioned in Section 5.1 (Table
4.3),

• Encryption: This aspect refers to the application of ABE mechanisms in CONNECT DLT as
also mentioned in Section 5.2 (Table 4.4) and
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• Non-repudiation and accountability: This aspect is related to the establishment of CON-
NECT DLT as a reputation system owning information necessary for the certification of any
CONNECT entity (Table 4.5).

Table 4.1: CONNECT DLT Requirements
Req# CONNECT DLT Requirements

DLT-01 The CONNECT DLT shall include only private ledgers towards ensuring
trustworthiness and security of information transacted within CONNECT.

DLT-02 The CONNECT DLT shall leverage ABAC mechanisms for granting access to
the different CONNECT components, as a permissioned Blockchain network.

DLT-03 Attestation evidence, trust models, and trust policies shall be deployed as
smart contracts onto the CONNECT DLT to facilitate the auditability
and reputation of CONNECT system.

DLT-04 The CONNECT components shall acquire necessary VCs to obtain access
to the CONNECT DLT.

DLT-05 The Security Context Broker shall undertake along with ABAC Service the
access control policy to the CONNECT DLT.

DLT-06 The data sent from the CONNECT components to the CONNECT DLT
shall be transformed into an appropriate format to be used for the
deployment of smart contracts.

DLT-07 The data that will be stored in the Off-chain Storage shall be encrypted
leveraging ABE mechanisms.

DLT-08 The Private Ledger of the CONNECT DLT shall contain only the hashes of
attestation evidence, while the actual attestation data shall be stored
in Off-chain Storage.

DLT-09 The storage location of data in Off-chain Storage shall be maintained
as pointers in the Private Ledger.

4.4 Definition of Smart Contracts

4.4.1 Smart Contract deployment workflows

As also mentioned in previous subsections, attestation evidence, trust policies, trust models and
RTLs are all stored in the CONNECT DLT through the creation and execution of smart contracts.
Smart contracts are self-executing contracts directly written into chaincode. They operate on the
CONNECT Blockchain infrastructure, enabling secure and automated execution of transactions,
ensuring transparency and immutability. Smart contracts leverage a decentralized environment,
by exploiting a network of peers that reach consensus on the state of the Blockchain, thus, elimi-
nating the need for a centralized authority to control contract execution.

The smart contracts accommodate the logic that designates the storage and retrieval of data
in the CONNECT DLT. The chaincode of the smart contracts contains the necessary attributes
to facilitate the compatible processing by the Blockchain peers. The Security Context Broker
commences the execution of the smart contract by sending as a transaction the chaincode along
with the appropriate signing parameters to the Blockchain peer. Afterwards, the transaction is
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Table 4.2: Confidentiality and Integrity Requirements
SEC1 Confidentiality and Integrity
The data in CONNECT DLT should be safeguarded through appropriate measures to
assure the integrity, confidentiality, and availability during the whole data lifecycle
Req# CONNECT DLT SEC Requirements
DLT-SEC-01 The CONNECT DLT shall be deployed onto such a number of Blockchain

peers towards assuring the data integrity in the ledger.
DLT-SEC-02 The consensus mechanism of the CONNECT DLT shall ensure the data

integrity in the ledger.
DLT-SEC-03 Smart contract mechanisms shall be used in the CONNECT DLT for the

secure recording of data transactions in the CONNECT system.
DLT-SEC-04 The Security Context Broker is the only intermediary between the

CONNECT components and the Off-chain Storage, ensuring security and
confidentiality in data access.

DLT-SEC-05 The CONNECT DLT and the Security Context Broker shall exchange
information in a secure manner.

DLT-SEC-06 The Security Context Broker shall govern the access of CONNECT
components to the CONNECT DLT by exploiting ABAC functionalities.

DLT-SEC-07 Sensitive or large-size data will be stored in the Off-chain Storage of the
CONNECT DLT to ensure efficiency and availability (e.g., sensitive raw
traces with their deviceID).

DLT-SEC-08 The Private Ledger of the CONNECT DLT shall maintain as encrypted
pointers the locations of data stored in the Off-chain Storage.

DLT-SEC-09 The CONNECT DLT shall exploit an Off-chain data storage component to
safeguard data availability.

DLT-SEC-10 The Off-chain Storage of the CONNECT DLT shall maintain the stored data
in an encrypted format to ensure security and confidentiality.

designated to a recipient peer, which performs a validation check on the transaction towards
ensuring the correctness of the smart contract chaincode. This chaincode is written as a block in
the Private Ledger and the state of the ledger is updated (Figure 4.2).

Figure 4.2: Smart contract transformation

Upon the transformation of a smart contract into transaction, the smart contract for that transac-
tion can be executed by sending an execution request to the API Layer. This request is trans-
formed into chaincode and sent to a Blockchain peer, which takes over the execution of the smart
contract and converts it to chaincode that is sent to the Ordering Service. The received transac-
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Table 4.3: Authorisation and Access Control requirements
SEC2 Authorisation and Access Control
The CONNECT components (e.g., OEM, MEC) shall have access to the CONNECT DLT
based on specific attributed based access policies, ensuring the authentication
and authorisation mechanisms of CONNECT DLT.
Req# CONNECT DLT SEC Requirements
DLT-SEC-11 The access policies dictating the data transactions shall be contained in

the deployed smart contracts.
DLT-SEC-12 The ABAC Service shall be an integral part of the Security Context Broker.
DLT-SEC-13 The data that are stored in the CONNECT DLT shall be accessed only by

the CONNECT components that hold the required attributes.
DLT-SEC-14 The ABAC Service shall coordinate the corresponding access of the

different CONNECT components to the CONNECT DLT.

Table 4.4: Encryption requirements
SEC3 Encryption
Within CONNECT DLT, all data will be encrypted through ABE mechanisms towards
safeguarding the privacy and security of data, both in the Private Ledger and the
Off-chain Storage.
Req# CONNECT DLT SEC Requirements
DLT-SEC-15 The encryption mechanisms in the CONNECT DLT shall exploit ABE so

that CONNECT components with the required attributes can decrypt the
data.

DLT-SEC-16 The ABE mechanisms shall allow the encryption of data both in the Private
Ledger (for locations of data acting as pointers to Off-Chain Storage) and
in the Off-chain Storage (for actual data of sensitive nature or large size),
using the necessary attributes per case.

DLT-SEC-17 The ABE mechanisms shall allow the decryption of data by the CONNECT
components that hold the necessary attributes.

tions are ordered and consolidated into a block by the Ordering Service. This block is sent back
to the Blockchain peer that checks the order and verifies the block transactions. Upon verification,
the ledger is updated with a new block (Figure 4.3).

Figure 4.3: Smart contract execution
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Table 4.5: Non-repudiation and Accountability requirements
SEC4 Non-repudiation and Accountability
The CONNECT DLT shall enforce the accountability of all CONNECT components for their
data transactions.
Req# CONNECT DLT SEC Requirements
DLT-SEC-18 The CONNECT DLT shall not allow the deletion or update of stored data.
DLT-SEC-19 Hashes of data transactions shall be stored in the Private Ledger towards

assuring the traceability of transactions in CONNECT.
DLT-SEC-20 Data transactions in the CONNECT DLT shall be validated by a group of

Blockchain Peers.
DLT-SEC-21 The consensus mechanism of the CONNECT DLT shall take into account

the resolutions of the majority of Blockchain Peers.

As there are two major data flows in CONNECT DLT, the management of attestation evidence and
the management of trust models/policies/RTLs, two main types of smart contracts are specified in
CONNECT accordingly. In this deliverable, focus is given on the smart contracts for the attestation
data flow in the next subsections, while the smart contracts for the trust policy data flow will be
detailed in the next deliverable D5.3, accommodating the input from trust models and RTLs that
are described in deliverable D3.2 and will be finalized in M21 of the project.

4.4.2 Data storage in CONNECT DLT (attestation evidence)

Towards showcasing a fundamental example of smart contract execution in the CONNECT DLT,
the recording of failed attestation evidence coming from the AIV of a MEC (or Vehicle), is now de-
scribed (see Figure 4.4). The process commences when an attestation is requested by the AIV.
The actual failed attestation data are stored on the Off-chain Storage due to their rather large size
in order to maintain the lightweight nature of Private Ledger. After the attestation execution and
the failed result, the failed attestation data are encrypted exploiting ABE mechanisms. The ABE
encryption transforms the results into a format readable solely by entities holding the suitable at-
tributes. This ensures that even in the unlikely case that an entity manages to access the Private
Ledgers and the Off-chain Storage, lacking the necessary attributes will prohibit decryption, mak-
ing the attestation evidence impractical for use. Upon encrypting the attestation evidence, the
AIV requests access to the CONNECT DLT to record the attestation evidence using its VCs (that
have been acquired previously from CONNECT TCB). The ABAC Service determines whether
the AIV is part of the CONNECT system and provided that the attributes are correct, grants ac-
cess. The access permissions managed by ABAC Service are an integral part of the Security
Context Broker. After being granted access, the AIV transmits the encrypted failed attestation ev-
idence to the Private Ledger, accomplished through the API Layer, which is part of the Blockchain
Peer of the CONNECT DLT. The information sent includes the attestation data, which are sent
to the Private Ledger and the encrypted attestation log files for the failed result. The API Layer
converts the attestation evidence into suitable output that can be digested by the Chaincode Ser-
vice and the Security Context Broker. Afterwards, the hash of the attestation evidence has to be
stored in the Private Ledger. The API Layer sends the hash to the Chaincode Service, which
executes the transaction and conveys it to the Ordering Service. The ordered transaction block
is afterwards returned to the Blockchain Peers, which commit the block in the Private Ledger.
The address of the transaction block is sent back to the API Layer, completing the successful
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execution of the transaction in the CONNECT DLT. After the transaction is recorded in the Private
Ledger, the hash, the address of the transaction block and the encrypted attestation evidence are
sent through the API Layer to the Security Context Broker, which stores the encrypted attestation
evidence in the Off-Chain Storage and receives a pointer to the exact storage location of the
data. This pointer is forwarded to the API Layer to execute another transaction, as the pointer is
appended to the previous transaction, by performing the same flow of transaction execution and
storage in the Private Ledger of the CONNECT DLT.

Figure 4.4: Attestation evidence recording in CONNECT DLT

4.4.3 Data retrieval in CONNECT DLT

In general, when an entity needs to retrieve information from the Private Ledger, it starts by re-
questing access to the CONNECT DLT through interaction with the ABAC Service. Provided the
entity has the necessary VCs (Verifiable Credentials), it will be granted access and can then make
a retrieval request that contains the address of the requested transaction block is forwarded to the
Security Context Broker. The Security Context Broker sends this request to the Chaincode Ser-
vice that transforms the query and forwards it to the Private Ledger. The Private Ledger returns
the corresponding encrypted data of the specific block, which are sent back to the requesting
entity through the Security Context Broker. Upon receiving the requested information, the entity
can decrypt the data only if it has acquired the necessary ABE keys from the CONNECT TCB
(Trusted Computing Base). In this way, it is ensured that any unauthorized entity cannot access
data of the CONNECT DLT, even in the unlikely case that gets access to them. A similar process
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is followed for retrieving values from the Off-Chain Storage where ABAC Service and SCB are en-
gaged. It has to be noted that for requesting entities that are already registered in the Blockchain
CA (see also section 5.1) it is not necessary to be authenticated with VCs each time they need to
access the CONNECT DLT. Note that data in the Private Ledger may not be encrypted to make
the DLT as lightweight as possible, hence in this case decryption is not required. However, this
is not a weakness in CONNECT security as the requesting entities are authorised, and even in
the unlikely case that an unauthorized component gets access to such an unencrypted informa-
tion, this would be useless since unencrypted data in DLT are only pointers to encrypted data in
Off-chain Storage that cannot be accessible to components without the necessary ABE keys.

Figure 4.5: Retrieval of data from CONNECT DLT

4.4.4 Smart Contract Data Model Definition

The data models used in the context of Smart Contract definition drive the functional specifica-
tions in CONNECT DLT for the storage and retrieval of failed attestation evidence. These models
are presented in the form of data structures, containing the properties that shall be included in
each structure.
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The specified data structures along with the fields included in each structure are described below
and presented in the following tables:

Trust Policy Structure: This structure contains all required information for the definition of a Trust
Policy, comprising the RTL and the trust model for the specific CCAM function of interest. After
invoking the CreateTrustPolicy() function, the Trust Policy structure is stored in the Private
Ledger (see also Table 4.6).

AttestationReport Data Structure: It is contained within the Trust Policy Structure under the
name Report, including information regarding the failed attestation report results after the attes-
tation is concluded, for the specific trust model included in the target policy. It is primarily used
by the components which are responsible for formulating the attestation report. After invoking the
CreateAttestationReport() function, the report is stored in the Private Ledger, under a unique
PolicyID (see also Table 4.7).

AttestationPublicKeys Data Structure: This is contained within the Attestation Report Data
Structure, under the name AttestationPublicKeys, including information regarding the Public Keys
of the prover and the verifier that are used during an attestation process (see also Table 4.8).

Name Data Type JSON Schema Description
PolicyID string ‘json:”policyID”‘ String identifier used as a

unique key for denoting a
specific policy. Required
so that devices are able to
query for a specific policy,
based on the required func-
tionality to perform.

CreatedAt string ‘json:”createdAt”‘ String identifier including
the creation date of the
policy. Used for complex
queries on the DLT that are
based upon creation date of
a Policy.

Functions []string ‘json:”functions”‘ An array of strings that con-
tains the functions that the
policy is intended for. After
being notified about the de-
ployment of an Attestation
Smart Contract, the func-
tion can query the DLT to
read the Attestation Tasks
of this PolicyID.

TrustModel []TrustModel ‘json:”trustModel”‘ A trust model, to be defined
ModeOfOperation string ‘json:”modeOfOperation”‘ String identifier denoting

the type of communication
with the TAF. More specifi-
cally, it can be synchronous
or asynchronous; in the for-
mer, the TAF is initiating
the collection of evidence
through a trust assessment
request; in the latter, the
TAF is notified automatically
of any change in the trust
state of the target device.

Table 4.6: Trust Policy Model Structure
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Name Data Type JSON Schema Description
ReportID string ‘json:”reportID”‘ A string identifier used as a

unique key for the identifica-
tion of a specific attestation
report. Complex queries on
the DLT involving multiple
reports utilize the reportID
field to identify the relevant
reports.

TaskID string ‘json:”taskID”‘ A string identifier used to
designate the TaskID of the
task that was performed,
and based on which the at-
testation report was gener-
ated.

RecordedAt string ‘json:”recordedAt”‘ A string identifier including
the creation date of the at-
testation report. Complex
queries on the DLT may be
based upon this field.

ListOfAccessAttributes []string ‘json:”listOfAccessAttributes”‘ This field refers to the list
of attributes that a device
should possess, in order to
be able to read this particu-
lar attestation report.

Signature string ‘json:”signature”‘ The signature contains two
parts: i) The signature on
the system measurements
that were provided by the
Prover to the Verifier, and
ii) the signature by the Ver-
ifier that performs the veri-
fication and provides the re-
sults. Both these signatures
are created through the At-
testation Keys of their re-
spective signed DAAs, and
are used in order to verify
the integrity of the data.

AttestationPublicKeys AttestationPKI ‘json:”attestationPublicKeys”‘ An AttestationPKI struct,
which contains x509 public
key signatures of the Prover
and the Verifier in string
form.

TypeOfPublicKey typeOfPublicKey ‘json:”typeOfPublicKey”‘ An enumeration type iden-
tifier, which is used to in-
dicate the type of the pub-
lic key, which can either be
Elliptic Curve Cryptography
(ECC) or RSA. Although the
typeOfPublicKey is kept as
an enum field (ECC or RSA)
of the Attestation Report,
it can be also retrieved di-
rectly from the Public Key.
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Hash string ‘json:”hash”‘ Contains the hash value
of the attestation report,
which is calculated by the
Trustworthiness Claims
Handler and signed un-
der the newly designed
anonymous threshold DAA
scheme.

DBPointer string ‘json:”DBPointer”‘ A string identifier, that is
used by the SCB to store
the value of the primary
key of the attestation control
flow after the attestation re-
port is concluded, in the Off-
chain Storage.

Metadata []string ‘json:”metadata”‘ An array of strings that is
used by the SCB to store
ABE encrypted metadata
after a attestation report is
stored in the DLT.

Table 4.7: Attestation Report Data Structure

Name Data Type JSON Schema Description
AttestationProver string ‘json:”attestationProver”‘ A string identifier used to

hold the Public part of the
Prover’s Attestation Key,
which is used to sign the
traced configuration or
control-flow data, in order
to be sent to the verifier.

AttestationVerifier string ‘json:”attestationVerifier”‘ A string identifier that is
used to hold the Public part
of the Verifier’s Attestation
Key, which is used to sign
the attestation report, after
the attestation process is
complete.

Table 4.8: AttestationPublicKeys Data Structure
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Chapter 5

Blockchain Data Management

5.1 Attribute-based Access Control

Towards ensuring the trustworthiness and security of information in CONNECT DLT, authentica-
tion and authorization mechanisms should be supported by robust access policy functionalities. A
review on access control approaches is presented before selecting the most suitable mechanism
for the CONNECT DLT. Then, a description of the selected approach is provided [28].

Attribute-Based Access Control (ABAC)

ABAC is an access control model that considers attributes of users, resources and the environ-
ment to make access decisions. It dynamically evaluates attributes against policies to deter-
mine whether a user should be granted access. ABAC provides fine-grained control over access
by considering a wide range of attributes, such as user roles, location and time. Access deci-
sions are made dynamically based on the current state of attributes, allowing for adaptable and
context-aware access control. ABAC is well-suited for complex and dynamic environments where
traditional access control models may be less flexible.

Role-Based Access Control (RBAC)

RBAC is a widely used access control model where access permissions are assigned based on
predefined roles. Users are assigned roles and permissions associated with those roles deter-
mine what actions users are allowed to perform. RBAC simplifies access control by organizing
permissions into roles, making it easier to manage user access within an organization. RBAC
follows the principle of least privilege, ensuring that users have the minimum level of access nec-
essary to perform their job functions. Access decisions are based on the roles assigned to users
and these roles typically remain static until explicitly modified.

Policy-Based Access Control (PBAC)

PBAC is an access control model that uses policies to define access rules and conditions. Poli-
cies are expressed in a high-level language, allowing for expressive and flexible access control
configurations. PBAC provides a high degree of flexibility by allowing the specification of access
policies in a natural language or a specialized policy language. Access policies are typically man-
aged centrally, making it easier to enforce consistent access control rules across an organization.
PBAC can adapt to changes in the organization’s requirements by updating or adding policies
without the need for significant changes to the underlying access control infrastructure.

ABAC for CONNECT DLT
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Choosing Attribute-Based Access Control (ABAC) over other access control mechanisms like
Role-Based Access Control (RBAC) or Policy-Based Access Control (PBAC) in CONNECT DLT
is based on the following reasons [24]:

• The granular control in ABAC allows for more precise and context-aware access decisions.

• ABAC makes access decisions dynamically based on the current state of attributes. This
adaptability is valuable in CONNECT where access requirements may change frequently,
enabling the system to respond to evolving conditions.

• ABAC takes into account contextual information, such as location, time of day and user
attributes. This context-awareness allows for more intelligent and situation-specific access
control, enhancing security and privacy of information in CONNECT DLT.

• ABAC is well-suited for scalable and adaptable access control scenarios, as it can easily
incorporate new attributes and policies without the need for significant reconfiguration.

• The policies in ABAC are often expressed in terms of attributes, making them more intuitive
and natural to define. This can simplify policy management and make it easier to align
access control with business logic.

• ABAC can assist in meeting regulatory compliance requirements, especially in industries
where access control must adhere to specific rules and conditions. The ability to define and
enforce policies based on regulatory requirements is a significant advantage in CONNECT,
considering the CCAM regulatory frameworks.

• ABAC can facilitate interoperability by supporting standards such as XACML (eXtensible
Access Control Markup Language). This is essential in CONNECT DLT where multiple
components need to operate sawith a common access control framework.

The ABAC Service

Towards entering the CONNECT DLT private channels for the first time, a new CONNECT compo-
nent (e.g., a CONNECT component or a CCAM stakeholder) needs to send its attributes (issued
by an external verified issuer, that can be for instance an OEM, and are encoded as VCs) to the
ABAC so that the validity of the attributes issued can be verified. If this is correct, a request is
forwarded to the Blockchain CA to register the CONNECT component towards receiving the cor-
rect certification. If the presented attributes have been successfully verified (i.e., been issued by a
valid issuer), a new certificate is issued by the Blockchain CA and stored to the component. Upon
successful verification, the CONNECT component enters the CONNECT DLT and accesses the
Private Ledger. More information about the interconnection of the ABAC Service with the trust
management and the leverage of verifiable credentials will be presented in the deliverable D4.3.
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Figure 5.1: ABAC mechanism in CONNECT DLT

5.2 Attribute-based Encryption

As already mentioned in Section 4, encryption is necessary in CONNECT DLT for ensuring the
security and privacy of information that is stored in CONNECT DLT. A comprehensive state-of-
the-art review on Attribute-Based Encryption (ABE) schemes is provided to enable selection of
the most suitable approach for CONNECT DLT, while afterwards a detailed description of the
selected encryption scheme is presented.

Attribute-Based Encryption (ABE) is a cryptographic scheme that provides a flexible and fine-
grained access control mechanism for encrypted data [26]. In ABE, access policies are defined
using attributes and only users with the specific attributes required by the policy can decrypt
the encrypted data. The attributes represent the characteristics or properties associated with
users or data. The data to be encrypted is referred to as plaintext, while the encrypted form is
known as ciphertext. ABE allows encryption and decryption of data based on specified attributes.
Users are assigned private keys based also on their attributes. A private key is generated by
the key authority and includes the user’s attributes. The encryption process involves generating
a ciphertext that is dependent on the access policy. Users with the corresponding attributes
reflected in their private keys can decrypt the ciphertext and access the plaintext data. In ABE,
data can be encrypted with respect to subsets of attributes (Key-Policy ABE) or policies defined
over a set of attributes (Ciphertext-Policy ABE).
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5.2.1 Ciphertext-Policy ABE

In CP-ABE, a user’s private key is associated with a set of attributes and a ciphertext specifies
an access policy over a defined universe of attributes within the system [9]. A ciphertext can be
decrypted by a user, only in the case the policy of the corresponding ciphertext is matched by
these attributes. Policies may be defined over attributes using conjunctions, disjunctions and (k,
n)-threshold gates, i.e., k out of n attributes have to be present. In this sense, CP-ABE enables
the definition of implicit authorization, which is contained within the encrypted data and only users
who match the relevant policy can decrypt data. In addition, users can use their private keys to
decrypt the data provided they satisfy one of the policies used to encrypt the data. As a result,
data can be encrypted without knowing the precise users that will be able to decrypt, but only by
definining the policy which enables decryption. Therefore, any users receiving a key that contain
attributes satisfying the policy, will be allowed to decrypt the data.

5.2.2 Key-Policy ABE

Key-policy attribute-based encryption (KP-ABE) is similar to CP-ABE, in the sense that an access
policy is encoded into secret key of the user and a ciphertext is computed based on a specific
attributes [14]. An important feature that has to be addressed by KP-ABE (but also CP-ABE) is
the collusion resistance. More specifically, distinct users should not be allowed to gather together
their secret keys towards managing to decrypt a ciphertext together, which noone alone could
decrypt. The solution to this problem is to randomize independently the secret keys of the users.

5.2.3 Decentralized ABE in CONNECT

The aforementioned two approaches are targeting at centralized ABE, where there is a single
central entity that manages the key generation, attribute policies and access control decisions.
This central entity is responsible for generating and distributing secret keys based on users’ at-
tributes. However, centralized ABE approaches may face scalability challenges as the central
authority becomes a potential bottleneck. Also, as trust is concentrated in this central entity, its
compromise could have significant security implications (single point of failure).

As such, decentralized ABE comes as a necessity in CONNECT, where trust management and
system reputation are at the forefront. The decentralized ABE involves multiple distributed enti-
ties that collaboratively contribute to the key generation, policy enforcement and access control
decisions. Unlike centralized ABE, trust is distributed across multiple entities. This can enhance
the security of the system, as the compromise of a single authority may not lead to a complete
breach. Decentralized ABE can provide better scalability, as the responsibilities are distributed.
It also provides redundancy, making the system more resilient to failures or attacks on individual
entities. Also, access policies may involve a collaborative effort among multiple authorities, each
contributing a part of the policy [18].

In this context, a high-level conceptual overview of the decentralized ABE scheme for CONNECT
DLT is presented below. Notably, the scheme consists of the three following phases, each of them
including various steps:

Initialization
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(A) A device in the ABE scheme may be either an encryptor or a decryptor. The device com-
mences by sending its static attributes to be used as part of verifiable presentations to the
Security Context Broker.

(B) A key is created by the SCB for the device to be put into its key hierarchy along with the static
attribute elliptic keys towards defining the encryption/decryption and HMAC keys under a
key policy, including a concatenation of dynamic and static attributes.

(C) This data is encrypted under the public part of the endorsement key of the device.

(D) When the encrypted data is obtained by the device, it decrypts and stores the attribute keys,
while putting the HMAC key provided by the SCB in its key hierarchy.

Encryption

(A) To encrypt data with ABE, an encryptor creates a random nonce.

(B) This nonce is used to calculate along with the master attribute key and the key restriction
policy, the encryption key seed.

(C) The encryption key is created under the key provided by the SCB, bound with the appropri-
ate policy.

(D) The device undergoes an integrity check, through the local attestation capabilities offered
by the underlying CONNECT TCB (see deliverable D4.2), towards encrypting the data,
using its list of attributes.

(E) Upon succeeding in the integrity check, the device encrypts the data and creates its HMAC.

(F) The device calculates a shared value, using the public static attribute keys, and the previ-
ously created random nonce.

(G) To perform a DAA signature operation on the key restriction policy, the device uses its DAA
key towards offering a security proof that the correct key restriction policy was employed
during the encryption of the raw traces.

(H) The device sends the encrypted data, the shared value, the HMAC, the policy signature,
the public part of the signing key and its corresponding credential to the SCB to be stored
in the Off-chain Storage.

(I) The policy signature used for the encryption along with the public part of the signing key,
are stored in the Private Ledger.

Decryption

(A) The decryptor retrieves the DAA signature in order to decrypt a set of ABE encrypted data.

(B) The device uses the policy expected to be used for the verification of the signature provided
by the encryptor and the recreation of the credential.

(C) Upon successful verification, the decryptor calculates the encryption key seed using its
static attribute key.
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(D) The decryptor creates an HMAC key using the extracted key seed to recalculate the HMAC
of the encrypted data.

(E) The decryptor runs an authentication check by comparing this HMAC with the one provided
by the encryptor.

(F) Upon successful authentication, an integrity check of the decryptor is performed with the
dynamic and static attributes.

(G) Since the integrity check is successful, the device decrypts the data with the extracted
attribute keys.

5.2.4 Overview of the CONNECT ABE scheme

Towards describing the CONNECT ABE scheme, the notation that is used within this section is
presented in Table 5.1.

Notation Description
KhEkA Handle of the Endorsement Key of device A
Ekpub Public part of the Endorsement Key
KhEk Handle of the endorsement key of the SCB (authority)
KHash Keyed hash key
KHashpub Public part of the keyed hash key
KhHash Handle of the keyed hash key
SH Session handle
DCC Command code of tpm2 duplicate
randP Random 32 bytes password
Priv The encrypted, by the random password and a TPM symmetric key, private part

of the keyed hash key
symSeed The encrypted (with the device’s endorsement key) seed that created the sym-

metric key that encrypted the private part of the keyed hash
sAbT Static attribute based on tree
rtA Run-time attributes
Cre The credentials needed for the initialization of the device
P The policy that includes both the static attributes and the run-time attributes
K A random nonce created by the TPM
Secret The seed for the creation of the encryption and the HMAC key
PK The public master attribute key
KhEnc The handle of the symmetric encryption key
HMACkey The handle of the HMAC key
HMAC The HMAC of the encrypted data
HMACp The recreated HMAC of the encrypted data
Sig The signature of the session digest
CT CipherText
ti An attribute of the static attribute-based tree
Pi The public attribute key of ti
shared The shared value that contains the static attributes that were used
D The set of leaves of the static attribute based tree that will be used for the extrac-

tion of the secret
R The root of the static attribute based tree
PT Plaintext
SH Session handle
Nonce Session nonce
SigPub Public part of the SCB’s signing key
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nP New policy
CpHash H(nonce|nP )
KhSigK Sey handle of the signing key of the SCB
SigP Signature of the new policy

Table 5.1: Notations used in the description of the CONNECT ABE
scheme.

An overview of the ABE scheme employed in CONNECT DLT (Figure 5.2) is described in the
following subsections, leveraging on the details of each different phase. More information will be
provided regarding the ABE implementation for the CONNECT DLT in the deliverable D5.3.

Encryptor SCB Decryptor

U = 1, 2, . . . , n
∀ i ∈ U
t, ti ←− -Zq

Pi = ti ·G
MK = t, PK = t ·G
Γ, qu(x), qR(0) = t
KHash

(Pi,ti,KHash) ∀i ∈UA←−−−−−−−−−−−−− (Pi,ti,KHash) ∀i ∈UB−−−−−−−−−−−−−→
k ← Zq

KDF (k.PK,KHash) = (kENC, kMAC)
C = ENC(M,kENC)
MAC = HMAC(M,kMAC)
CM = (ω,C,MAC,Ci = k · Pi)
Upload CM to the ledger

∀ (Ci, u) of Γ
Du = qu(0)/ti
DecryptNode(CM,D, u) = Du·Ci

= qu(0) · t−1
i · k · Pi

= qu(0) · k ·G, (i ∈ ω)
DecryptNode(CM,D,R) =
qR(0) · k ·G
= t · k ·G = k.PK
KDF (k.PK,KHash) =
(KENC, KMAC)
If HMAC(M,KMAC) = MAC
Decrypt M using kENC

Figure 5.2: Overview of the CONNECT ABE scheme

5.2.4.1 Initialization

The setup interface is commenced by the Security Context Broker (SCB) and is performed when a
device (encryptor or decryptor) joins the ABE scheme. As the trusted authority, the SCB verifies
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the attributes by their verifiable presentations during the secure enrollment of the device, gen-
erating the respective static attribute keys for each CONNECT component (device), as well as
defining the access control tree. An example of the access control tree is presented in Figure 5.3
(t and ti, i ∈ U , are represented by 32-byte digests).

Figure 5.3: Access control tree created by the SCB

The sequence of steps of the Initialization phase are described below:

(A) For the setup of the SCB, a keyed hash key is created as a child of the endorsement key
of the SCB. This key is migrated to every device that is securely enrolled to the SCB, to be
used as the parent of the encryption and the HMAC keys under the key hierarchy of the
device.

(B) The attribute space in the system is defined as the universe of attributes U = 1, 2, ..., n. For
each attribute i ∈ U , a number ti is chosen uniformly at random from Zq. The public key
of each attribute i is Pi = ti · G, where G is the group generator. The group generator is
public information that is known to all devices.

(C) The SCB chooses t uniformly at random from Zq to be the master private key t. Accordingly,
the master public key PK is PK = t · G. The public parameters are represented by
Params = PK,P1, ..., PU .

(D) The SCB defines an access tree Γ by creating a public polynomial qu(x) with order of
du − 1 for each node u in the access tree Γ in top-down manner such that qu(0) =
qparent(index(u)), where du is the threshold of the node u. For the root R of the access
tree Γ, set qR(0) = t.

In order to prevent the CPA attack presented in [29], the creation of qu at each node, should
not only depend on the index of the node u in the access tree, but also on an extra n-bit
randomness rA that depends on the access policy defined at this node. Thus, qu at the node
u is defined by qu(PRF (rA, indexu)) for some pseudo-random function PRF : {0, 1}n ×
{0, 1}∗ → Z∗

q that takes a random rA and the index of the node where the polynomial is
defined.
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(E) For the setup of the device (e.g., a vehicle ECU), the device’s DAA Key is used, which is
created during the secure enrollment for the encryption of the data that is not public and
that the SCB securely sends to the device.

(F) The device sends to the SCB the public part of its endorsement key along with the name of
the DAA Key.

(G) The SCB generates a random password, used to double encrypt the private part of the
keyed hash, comprising an extra level of security for freshness every time a device chal-
lenges the SCB to duplicate the keyed hash key. The SCB defines a random seed that
afterwards creates a symmetric key, which encrypts the private part of the key. The random
seed is encrypted with the public part of the endorsement key of the device that initiated
the challenge. Finally, the encrypted private part of the keyed hash is encrypted with the
random password generated by the SCB.

(H) The SCB encrypts the static attribute-based keys and the random password for each user
under the endorsement key of the device and wraps them with the name of the DAA Key.

(I) The SCB generates a Key Policy, which is the concatenation of the attributes defined by the
corresponding OEM of ECU, along with the command codes of the commands that need
to be executed. This Key Policy is bound with the encryption/decryption key to provide a
check on the integrity of the device.

(J) The SCB sends the respective Key Policy to the device, containing the list of attributes
as well as the encrypted attribute-based access control tree, in order for the device to be
able to calculate the random key seed for the encryption key and the HMAC key and to
compute the shared value from which the decryptor extracts the random key seed, along
with the random password, and the double encrypted private part of the keyed hash and
the encrypted (by the public part of the endorsement key of the device) seed that is used to
generate the inner password and the public part of the keyed hash.

(K) The device decrypts the encrypted static attribute-based tree and the random password
generated by the SCB.

(L) The device using the decrypted random password, the public part of the keyed hash, the
encrypt seed of the inner encryption key and the double encrypted private part of the keyed
hash safely imports the SCB keyed hash as a child of its endorsement key.The keyed hash
is imported to every device in order to support the creation of derived keys.

5.2.4.2 Encryption

During the Encryption phase, the encryptor encrypts data to be uploaded on the CONNECT DLT,
following the steps below:

(A) The encryptor creates a random secret k and performs the scalar multiplication k ∗ PK.

(B) The encryptor takes the secret value k ∗ PK, which is used as a co-seed along with the
private part of the imported keyed hash key, to create a symmetric encryption key bonded
with the key restriction policy that the SCB has created during the initialization phase and
an HMAC key, as children of the Keyed hash key.
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(C) The device loads the static attributes to a session. It also uses the run-time attributes to
check the key restriction policy, that the SCB has created during the initialization of the
protocol, against the policy that is created from the static attributes and run-time attributes
taken as input.

(D) The device encrypts the data with the newly created encryption key.

(E) The encryptor uses the DAA key to perform a DAA signature for the audited session digest,
towards using this signature as a proof of the correct policy usage.

(F) The device computes the digest of the encrypted data With the newly created HMAC key.

(G) The encryptor reads the static attributes and computes the shared value Ci = kPi for i ∈ ω,
where ω ⊂ U is a set of required attributes for the encryptor.

(H) The encryptor uploads the encrypted data, the HMAC of the encrypted data and the shared
value Ci.

5.2.4.3 Decryption

A device can decrypt data uploaded by an encryptor on the CONNECT DLT using matching
attributes, following the steps below:

(A) The decryptor that has the correct policy that had to be used during the encryption of the
data, verifies the DAA signature that the encryptor provided. Upon successful signature
verification, it is proven that the encryptor encrypted the data under the correct policy, thus
the decryptor can continue the decryption algorithm.

(B) For each Ci on the nodes u of Γ, the decryptor computes the corresponding decryption
node key denoted by D: Du = qu(0)/ti. Notably, i = attr(u) and ti is the attribute key
assigned to users from Zq in the Setup phase by the SCB, and t−1

i is the inverse element
of ti over finite field Zq.

(C) The decryptor executes the decryption algorithm DecryptNode(Ci, D, u) for a node u in
the access tree, which is defined as an recursive procedure. For a leaf node u, where
attributes are clearly defined, let i = attr(u). an For this node, the key is computed as
DecryptNode(Ci, D, u) = Du ∗ Ci = qu(0) · t−1

i · k · Pi. It should be stated that the output
of DecryptNode(Ci, D, u) is an element in an elliptic curve group or ⊥. Accordingly, for
the root node R of the access tree, the key is computed as DecryptNode(Ci, D,R) =
qR(0) · k ·G = t · k ·G = k · PK.

(D) The decryptor, with the extracted secret value k ∗ PK, uses k ∗ PK as a co-seed, along
with the private part of the imported from the SCB keyed hash, to create the decryption key
bound by the policy provided by the SCB and the HMAC Key, as children of the keyed hash
key.

(E) The decryptor computes the digest of the encrypted data, using the HMAC key, and com-
pares it to the one provided by the encryptor.

(F) Upon successful authentication, the decryptor loads the list of atrributes needed for getting
access to this specific data item.
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(G) Upon success of the integrity check, the decryptor decrypts the encrypted message using
the recreated decryption key.
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Chapter 6

Conclusions

The document delivers the first version of the CONNECT orchestration technology. It elaborates
on the combination of two CONNECT artifacts a) the distributed management of (legacy) ap-
plication containers and b) the confidential containers lifecycle management techniques. Their
interplay has been the main objective of the CONNECT networking technology implementation.
The above will act as the main vehicle towards realizing all involved communications among the
CONNECT points of interest (i.e., cloud, MEC and vehicles) and also support the task-offloading
concept; the latter has been also analysed in terms of a generic algorithm as well as practical
considerations to comply with the CONNECT demonstrator requirements/needs.

A second delivered body of work in this document amounts to the design of the distributed ledger
technology that facilitates the CONNECT trusted and secure data sharing; both for attestation re-
sults and trust-related data being hosted in the blockchain infrastructure. These allow CONNECT
to achieve auditability (through a verifiable yet privacy-preserving manner). All relevant details
as well as the appropriate access policies to allow for the handling/monitoring of those (current
or historical) data (e.g., past trustworthiness evidence), have been specified in this deliverable,
serving as a basis for their forthcoming implementation (to be detailed in D5.3).

When all above delivered contributions are combined with the utilisation of Verifiable Credentials
and Verifiable Presentations (D5.1) which rely on an efficient data model to capture all involved
evidence, the WP5 manages to already reach a highly-matured (i.e., towards integration-ready)
outcome; both the CONNECT-required communications can be supported by managing confiden-
tial containers, the ledger-based storage of important CONNECT data has been specified and at
the same time the necessary tools (D5.1) to drive the (runtime) trust assessment process have
been offered. The finalisation (second version) of the CONNECT orchestrator and the ledger soft-
ware is expected to build on top of the aforementioned contributions and constitute one important
means towards the realisation of the CONNECT integration and demonstrator (WP6).
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Chapter 7

List of Abbreviations

Abbreviation Translation
5G Fifth-generation Cellular Networks Technology

ABAC Attribute-Based Access Control

ABE Attribute-Based Encryption

AIV Attestation and Integrity Verification

API Application Programming Interface

ATL Actual Trust Level

BC Blockchain

CA Certification Authority

CCAM Connected, Cooperative, and Automated Mobility

CRI-O Container Runtime Interface (implementation)

CPA Chosen-Plaintext Attack

CP-ABE Ciphertext-Policy ABE

CPU Central Processing Unit

C-ACC Cooperative Adaptive Cruise Control

DAA Direct Anonymous Attestation

DLT Distributed Ledger Technology

ECC Elliptic Curve Cryptography

EVM Ethereum Virtual Machine

GPU Graphics Processing Unit

HLF Hyperledger Fabric

HMAC Hash-Based Message Authentication Codes

HW Hardware

IAM Identity and Authentication Management

ICT Information and Communications Technology

IP Internet Protocol

KPI Key Performarce Indcator
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Abbreviation Translation
K8s Kubernetes

LCM Lifecycle Management

MANO Management and Orchestration

MEC Multi-Access Edge Computing

MECsec Media Access Control Security

ML Machine Learning

MNO Mobile Network Operator

OCI Open Container Interface

OEM Original Equipment Manufacturer

OS Operating System

PBAC Policy-Based Access Control

PBFT Practical Byzantine Fault Tolerance

PKI Public Key Infrastructure

PoA Proof of Authority

PoW Proof of Work

RA Risk Assessement

RAM Random-Access Memory

RBAC Role-Based Access Control

RO Resoure Orchestrator

RSA Rivest–Shamir–Adleman cryptosystem

RTL Required Trust Level

RTT Round Trip Time

SCB Security Context Broker

SMTD Slow Moving Traffic Detection

SW Software

TAM Trust Assessment Manager

TAF Trust Assessment Framework

TC Trustworthiness Claim

TCB Trusted Computing Base

TEE Trusted Execution Environment

TPM Trusted Platform Module

VC Verifiable Credentials

VP Verifiable Presentation

Distributed Processing, Fast Offloading and MEC-enabled Orchestrator Page 53 of 56



CONNECT D5.2

Bibliography

[1] UN Regulation No. 155. Cyber security and cyber security management
system. https://unece.org/transport/documents/2021/03/standards/

un-regulation-no-155-cyber-security-and-cyber-security.

[2] ISO/SAE 21434:2021. Road vehicles Cybersecurity engineering. https://www.iso.org/

standard/70918.html.

[3] 5GAA. C-V2X use cases and service level requirements (2023). https://5gaa.org/

c-v2x-use-cases-and-service-level-requirements-volume-iii/.

[4] Abdelkader Aissioui, Adlen Ksentini, Abdelhak Mourad Gueroui, and Tarik Taleb. On en-
abling 5G automotive systems using follow me Edge-Cloud concept. IEEE Transactions on
Vehicular Technology, 67(6):5302–5316, 2018.
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