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Abstract—Collective Perception Services (CPS) enable com-
municating entities to share their perception data in the V2X
communication network. Potential attacks on extended percep-
tion data affect the CPS and may consequently degrade the
safety application that rely on collective perception data. In
this paper, we build an architecture that allows the integration
of misbehavior detection and mitigation mechanisms with the
CPS. We implement the Intersection Movement Assist (IMA)
application that uses the extended perception data to calculate
potential collision risks in intersection areas. We define specific
safety metrics and through extensive simulations in large scale
scenarios, we quantify the impact of a large number of attacks
and of misbehavior detection on the safety application. Our
evaluation demonstrates the ability of misbehavior detection
and mitigation mechanisms to filter malicious shard perception
data and consequently the benefits of using such mechanisms in
improving the robustness of the safety application in complex
road scenarios.

Index Terms— C-ITS, Misbehavior Detection, Simulation,
Collective Perception

I. INTRODUCTION

Collective perception has achieved significant progress re-
cently with the emergence of novel perception technologies
and V2X communication capabilities. Collective Perception
Services (CPS) primarily aim to overcome the limitations
of individual vehicular perception in complex environments
characterized by occlusions and limited sensor’s field of view.
Intersections are a typical example of such environments
where an important number of accidents may occur. For
instance, in 2019 in France 18% of fatal accidents occurred in
intersection. Using collaborative perception may increase the
awareness of a given vehicle about the non directly perceived
objects in the intersection thanks to the V2X CAM [1] and
CPM [2] messages. The information collected continuously
by the collaborative perception service is greatly useful for the
safety applications such as the Intersection Movement Assist
(IMA) application [3]. In this application, an ego vehicle con-
tinuously evaluates the potential crash zones in the intersection
by comparing its trajectory with those of other dynamic objects
(e.g., vehicles, pedestrians, etc.). When an estimated risk
indicator reaches a certain threshold, the application generates
a local alert which is intended for instance to change the
driving manoeuvre of the ego.

The IMA application relies mainly on the extended percep-
tion which is a data structure that contains the kinematic de-
scription of each known object. This data structure is obtained

and updated continuously by fusing the local perception data
and the V2X received messages. While fusion of perception
data is a challenging process due to some factors such as
data uncertainty, ambiguity or imprecision [4], it is even
more challenging when there are potential attackers among
the V2X transmitters. We call these attackers misbehaving
nodes. Misbehaving nodes are defined according to [5] as
“any node that transmits erroneous data that it should not
transmit when the hardware and software are behaving as
expected”. More precisely, in our work, we assume that
misbehaving entities are entities, which, while leveraging the
shared information through V2X, send erroneous perception
information to disrupt the safety applications. Misbehavior
detection was studied in the last decade. First approaches rely
on data plausibility and consistency verification [6]. Recently,
some work address misbehavior detection on V2X perception
data and use advanced techniques such as probabilistic ap-
proaches [7] or trust based approaches [8]. Validation and
evaluation of misbehavior detection performance relies on
usual metrics derived from false positive rate, false negative
rate or other detection time related metrics. In this work, we
assess the performance of misbehavior detection through its
ability to overcome the impact of several types of attacks
on a safety application for intersection scenarios. We first
build a framework where we tightly integrate misbehavior
detection and mitigation techniques to the CPS. Additionally,
we implement the IMA as a proof of concept of a safety
application that uses extended perception data and connect
it to the simulation environment. We define metrics to assess
the impact of misbehavior detection and mitigation on safety
application. Through extensive simulations on large scale
intersection scenarios, we demonstrate the positive effect of
our misbehavior detection and mitigation module on making
safety application more robust and resilient to attacks.

The rest of this paper is organized as follows: Section II
presents the related work. Section III outlines our simulation
framework architecture. Section IV details the simulation
parameters and evaluation metrics. Section V presents the
experimental results. Finally, Section VI concludes the paper.

II. RELATED WORK

Collective perception can compensate for the shortcomings
of the ego’s perception when occlusions occur, and is achieved
either by the exchange of raw sensor data or of processed data



[9], [10]. Many works elaborate a detailed analysis on the
potential benefits of using collective perception in enhancing
cooperative awareness and consequently the traffic safety.

[11] presents a highway simulation study that evaluates the
benefits of using collective perception in enhancing the road
safety level. The author define a set of metrics such as the
Object Awareness Ratio, the Risk Awareness Ratio and the
Object Tracking Accuracy. The overall results show a positive
impact in increasing safety when at least 25% of participant
are equipped with CPM transmission capabilities.

[12] shows the potential of sharing raw perception data
through Road Side Units (RSU) and its ability to support
safe passing through intersections. The study focuses on
deriving the required sensor data rate to prevent collisions
at intersections by evaluating the necessary braking distances
under several velocity and data rates settings. [13] quantifies
the occlusion risk in intersection areas with the presence of
Vulnerable Road Users (VRU). The work defines the Maxi-
mum Tracking Loss metric as a safety metric that captures
the period in which vehicles are not aware about VRUs in the
intersection. The authors demonstrate that with a penetration
rate of 25%, they are able to decrease the occlusion risk and
enhance the awareness about existing VRU in the intersection.

All these works highlight the benefits of using CPS and
generally V2X services for better road safety. However, several
types of perturbations may limit their benefits. These pertur-
bations may be caused by the degradation of the network
performance. For instance, channel congestion and its trade-
off with information freshness is one major challenge that has
been identified early on [14], [15]). Other types of perturbation
may be caused by the existence of attackers among the V2X
communication participants. The authors of [16] investigate
the impact of network attacks using the CAM messages on
the network performance level. In their study, they use usual
performance metrics such as the Packet Delivery Ratio to
assess specific safety metrics such as the Safety Risk Index.
Compared to network attacks, our work focuses on V2X
data attacks which may impact semantically the safety risk
assessment. [17] evaluates the impact of attacks on CAM and
CPM messages on highway merging scenarios. They show
the impact of both the fake arrival attacks on the highway
insertion time and the mean speed, and the ghost object attack
on increasing the potential accident risk. Compared to the
already cited works, our work uses similar safety metrics and
tailor them to the intersection scenarios. We use these metrics
to quantify the impact of a large number of CPS data attacks
on safety applications. We quantify also the benefits of using
detection and mitigation techniques in limiting the negative
impacts of the evaluated attacks on safety application.

III. GENERAL ARCHITECTURE

Fig.1 presents the architecture of the platform used for
evaluation in this work. The misbehavior detection and miti-
gation modules are tightly integrated to the global data fusion
module, which produces the extended perception used by the
IMA module. Due to space limitation, this section does not

detail the cooperative perception architecture. Examples of
such architectures may be found in [18] and [7].

A. Attack Injection

To assess the impact of the attacks on the IMA, we
address several types of attacks on CPS. Basic to moderate
attacks consist on changing the kinematic information of the
transmitted perceived objects in the CPM message. Advanced
attacks consist on creating non-existing objects (i.e. Ghost
injection) or omitting existing ones (i.e. object omission).
Table I summarizes the different categories of the attacks,
their severity rating, the potential detection techniques and
examples of the potential causes.

B. Global Data Fusion

1) Misbehavior Detection: Each received CPM and CAM
message is decoded and processed by the misbehavior de-
tection module, which verifies the message content before
relaying it to the Local perception and V2X message fusion.
We implement verification on several data levels as follows.

o Data plausibility verification: Check whether the single
attributes of the perceived objects in a received CPM are
plausible or not. The verification is specifically focusing
on comparing the attributes with pre-defined thresholds
(signal-based) or known relations to other attributes
(model-based).

« Data consistency verification: Consistency verification
check if the received data in the actual CPM from one
source are consistent with the past received data from the
same source in a certain period of time. In this verification
we use kinematic rules or filtering approaches such as
Kalman Filtering.

o Local perception data redundancy verification: Redun-
dancy verification are based on the verification of V2X
perception data coming from neighbors and the Ego local
perception data. The solution is based on comparing the
objects that are detected in the perception area of the
Ego and the content of the CPM message. Due to the
limitation of this approaches in occlusion scenarios, we
deploy this verification only on Road Side Units with
sensors that are much less impacted by occlusions in
urban scenarios.

2) Misbehavior Mitigation: Misbehavior mitigation is an
essential step to robustly transmit a reliable Extended Percep-
tion data to the IMA. The objective is to take the appropriate
decisions when an attack on the V2X data is detected. The
mitigation measures are listed below.

« Filtering the received V2X messages: The first mitigation
strategy is to avoid propagating the attack in the extended
perception data base. When a misbehavior is detected on
a given message, the message is discarded and the V2X
generating source is inserted in a blacklist structure. All
the successive messages received from the same source
are ignored

o Generating a Misbehavior Report: Once a misbehavior
is detected, a vehicle should send an alert known as
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Fig. 1: The General Architecture of the integrated Misbehavior Detection and the IMA application

TABLE I: Addressed attacks

Attacks Severity of the attack Detection techniques

Description Potential cause or objective

Non-plausible kinematic data Basic Physical law plausibility checks

The attacker sends implausible
kinematic data of a perceived object such
a random position

Lidar perception degrades when
the perceived object is
localized far from the sensor

Non-consistent kinematic data basic/moderate Model based consistency checks

of a perceived object in successive CPMs. For example,

and speed and a second CPM with a very high speed

Attacker simulates a
sudden stop of a
perceived vehicle
in the road

The attacker sends inconsistent kinematic data

it sends a first CPM with a correct position

Onmission attack moderate/advanced Data redundancy checks The attacker omits the existence of one or several Generate potential dangerous manoeuvre
real perceived objects in successive CPMs at the intersection
Ghost injection attack moderate/advanced Data redundancy checks The attacker sends a fake perceived object with Gain turning priority

plausible and consistent kinematic data at the intersection

Misbehavior Report [19] to a back-end security server
called the Misbehavior Authority. This report should
contain the set of evidence (i.e., proof) confirming the
results of the misbehavior detection. Notice that this
mitigation step is out of the scope of this work.

3) Local Perception and V2X message Fusion: The local
perception consists first on collecting and merging data gen-
erated from several local sensors such as Lidars, cameras,
radars and etc. The main operations in this module consist
on multi-sensor data fusion, which generates as an output a
list of local perceived objects. Each object has a local identifier
and is characterized by a set of kinematic attributes in the local
reference of the Ego vehicle. Second, the local perception
is merged with the received V2X messages to elaborate an
extended view of the perceived objects in the environment.
Potentially, other data may be used such as geographic maps
or contextual information. As shown in Fig. 1, this module
updates the Extended Perception which contains the list
of the extended perceived objects. Each perceived object
is described by a unique identifier and a set of kinematic
attributes.

C. The Intersection Movement Assist Application

1) Risk Indicator Assessment: In this section, we describe
the risk assessment method used by the IMA in intersec-
tion areas. For each given Ego vehicle equipped with V2X
communication capabilities, the IMA accesses periodically the
extended perception content. The access frequency is much
associated to the type of the application. The more the safety
decision is critical, the higher the frequency should be to
ensure the freshness of the extended perception data. In our

case, we set this frequency to 300 ms. We are interested in
assessing the collision risk at each time ¢ as long as a given
Ego vehicle approaches an intersection ¢ during its journey. A
journey here is defined as the path between a starting source
position and a final destination position. The IMA locates
the Ego vehicle in the geographic map. If the Ego is driving
towards a close intersection, the IMA calculates its Time-To-
Intersection (TTI). The T'T'I,, ; is function of the distance D,, ;
of a given vehicle v to the center of the intersection and
its velocity V,; at a given time ¢. For each dynamic object
O in the extended perception list driving towards the same
intersection as the Ego, the IMA calculates its 71715 ; and the
resulting difference with the ego, TT'I.4, 0 . The intersection
collision risk in our case is an exponential function of the
TTI.40,0, Notice that other more complex risk assessment
functions are possible [20]. We choose a simple function in our
work because our focus is on studying the impact of the attacks
on the IMA, as a proof Of Concept of a safety application
for intersection scenarios. We may tune the risk assessment
threshold by choosing more conservative values.

Dv,t

v,t
TTIcgo,04 =TT1egor —TTIo,
— ¢ TTlego0.

TTI,, =
(1)

Tt

2) Kinematic Reaction: When a the TTIgg4,; reaches
a certain threshold and the r; o, is higher than a certain
threshold, a collision alert event is generated and displayed
on the dashboard to warn the driver. Additionally, a kinematic
reaction is decided and is associated to a risk severity. In



Fig. 2: Intersection Movement Assist implemented dashboard

this paper, we define two possible kinematic decisions, either
stopping the vehicle through a braking manoeuvre for a certain
duration of time or authorizing it to cross safely the intersec-
tion. Finally, the highest collision risk 7,44, 18 selected among
all the objects and displayed on the dashboard. Fig.2 shows
the implemented dashboard on the IMA.

Algorithm 1 Intersection Risk Assessment

use randomly generated vehicle traces as the test benchmark.
Two levels (20% and 80%) of generated vehicles are equipped
with the V2X service. We test three attacker densities with
the same simulation seed. All simulation settings are shown
in TABLE II.

Fig. 3: Paris Saclay Network

TABLE II: Simulation Parameters

Simulation duration 1h
Penetration rate 0.8 0.2

Input: Extended Perception at time %y,
Output: Risk assessment r; ; locate Ego’s current road and
next close intersection ¢
1: calculate Ego’s current road and next intersection ¢
2: for each perceived object O in the extended perception
list do

3: locate object’s current road and next close intersection

4: if Ego and O are not in the same road and go towards
the same intersection ¢ then

5: calculate TTI difference as

TTIggo,0,i = TTIgge; — TTIp it = e~ T eavovie

2
7: if TTIggos < TTLinreshota & Tiox >
T'threshold then
8: generate and display Collision Alert
: brake Ego for a certain duration
10: end if
11: end if
12: end for

display 70, = €™"(=TT1eg0.0.0) on Dashboard

IV. EXPERIMENTAL EVALUATION
A. Experimental Settings

We provide our simulation framework as an open source
simulation platform [21]. The platform combines the Artery
simulator with the CARLA simulator and the external intersec-
tion assistance application. We evaluate the IMA application
under attack scenarios on a large scale. We consider the
Paris Saclay network to validate our simulation framework, as
shown in Fig. 3. This scenario contains a network size of 1.24
km? with a stable vehicle density of 18.2 vehicles/km?. We

Total generated

connected vehicles 425 87
Attacker density 0.25 0.15 0.05
Scenario size 1.24 km?
Vehicle density 18.2 Veh / km?
Communication media 802.11p
Communication profile ITS-G5

Communication type
CPM interval

Single Hop Broadcast
1 sec (fixed rate)
FoV range = 200m
FoV angle = £20°

Front radar sensor

B. Attack Model

We consider the internal attacks in our V2X attack model.
The attacker possesses a legitimate digital certificate, allowing
authentication and ensuring the integrity of transmitted mes-
sages. We assume that the attacker has full priority access
to sensor data and can modify sensor measurements when
encoding them in the CPM. All tested attack types are depicted
as follows:

o Addition of a ghost perceived object: Adding a ghost
object at a random fixed position around the attacker in
CPMs. All kinematic data keeps the same as the attacker.

e Omission of the perceived object:

1) Omission of all perceived objects
2) Omission of one specific perceived object

« Alteration on the perceived object position

1) Random position: For each transmitted CPM, the po-
sition is chosen with uniform distribution as a random
point in the map (The range is the map size).
Position, = U(Map_Xmin, Map_Xmaz)
Positiony = U(Map_Ypin, Map_Yaz)

2) Constant position: The position is a fixed value within
the reasonable ego’s perception range.



Const, = U (0, max_Sensor Range,,)
Const, = U(0, maz_SensorRange,)
Position, = Const,
Position, = Const,

3) Random position offset: For each transmitted CPM,
add a noise to the actual distance data. The noise is
obtained sampling from a gaussian distribution with
p=0and o= W'

Positiong = current_Positiong + N(

0
0 max_SensorRange
( ’ 10 )

0 7naa:_Sensm'Runge)
k)

Positiony = current_Position, + N
« Alteration on the speed

1) Random speed: For each transmitted CPM, the speed
is chosen from a uniform distribution.
Speed, = U(0, Max_Speed)
Speed,, = U (0, Max_Speed)

2) Constant speed: The speed is a fixed value within the
max reasonable speed.
Const, = U(0, Max_Speed)
Const, = U(0, Maz_Speed)
Speed, = Const,
Speed, = Const,

3) Random speed offset: For each transmitted CPM, add
a noise to the actual speed data. The noise is obtained

sampling from a gaussian distribution with ¢ = 0 and

__ current_Speed
g = — 10 -

t_Speed
Speed = current_Speed 4 N (0, “2PE%)

C. Evaluation Metrics

We define a set of metrics to evaluate the impact of attacks
and misbehaviour detection and remediation in a large-scale
simulation setting. In order to allow comparison, we run
the same Paris Saclay Network scenario, with fixed vehicle
trajectories, for the following cases:

(i) Genuine nominal condition (i.e., no attack)
(i1) Attack condition, for different types of attacks with
different severity levels
(iii) Attack condition with MBD, for the same attacks of
the previous situation, when misbehavior detection and
mitigation measures deployed in each Ego vehicle

The metrics that we compare for each of the previous
situations are the following:

a) Average Intersection Awareness: The Intersection
Awareness of the ego vehicle is a function describing the
number of objects in its extended perception w.r.t the distance
from the intersection center as it approaches the intersection.
In a large scale scenario, the Average Intersection Awareness
(AIA) is the cumulative Intersection Awareness of the ego,
considered over all the intersections in the scenario, and av-
eraged by the number of vehicles in the simulation. Similarly
to the Environment Awareness Ratio presented in [11], this
metric captures the awareness of the ego, with the difference
that we concentrate on the intersection area. The AIA is
chosen as an indicator to evaluate the impact of attacks: it
increases when the attack has the capability of fabricating non-

existent objects; it decreases when the effect of the attack is
the masking of information.

b) Total Collision Alert Events: As described in Section
III-C, a Collision Alert Event (CAE) is raised by the IMA
application when an assessed risk reaches a certain threshold.
On the large scale scenario, we evaluate the cumulative
number of CAE (raised by all vehicles during the entire
simulation). Comparing the Total Collision Alert Events in the
three situations described above allows to assess the number
of missed collision alerts and the number of false collision
alerts generated by the application. Notice that a collision alert
usually leads to a braking manoeuvre and has a significant
safety impact on the traffic scenario.

c) Average Waiting Time: The Waiting Time is defined
as the cumulative time that a vehicle spends at a standstill
throughout the entire simulation. The Average Waiting Time
is the average across all vehicles in the simulated scenario.
It’s interesting to look at this metric since the reaction of the
IMA application to an alert is to stop the ego vehicle. Hence,
the Average Waiting Time is going to positively correlate with
the Total CAE. Examining the increase of the Average Waiting
Time in case of attacks allows to provide an indication of the
impact of the attacks on traffic congestion.

V. DISCUSSION
A. Average Intersection Awareness (AIA)

Fig. 4 shows the AIA for the simulation of the Paris Saclay
Network, for the different types of attacks, with a penetration
rate 0.8 and attacker rate of 0.25. We compare the nominal
condition (green) with the attack condition (red), and we find
that the DropAllObj, the DropObj attacks have an impact on
the AIA, decreasing the awareness of the ego. On the other
hand, the AddObj, SigleConstDist, SingleRandomDist attacks
increase the AIA of the ego: notice that this is due to the
fact that the ego now perceives either non-existent objects, or
perceives the same object more than once.

Finally, we consider the impact of misbehavior detection
and mitigation (blue). In general, for the nominal case, the
AIA with the misbehaviour detection is slightly lower than
that of the nominal case due to occasional false positives from
the misbehavior detection system. For the DropAllObj and
DropOb;j attacks, misbehavior detection obviously does not
bring an improvement in the AIA since the information was
missing in the first place. However, in the case of position
alteration attacks, we can see that the misbehavior detection
and mitigation system is able to bring the AIA back very close
to the nominal values.

B. Total Collision Alert Events

Table III presents the Total Collision Alert Events for
the Paris Saclay Network under different penetration rates
in presence of the considered attacks. In the genuine case,
the Total CAE is 694 when the penetration rate is 0.8, and
164 when the penetration rate is 0.2. The Table presents the
variation of the Total CAE with respect to the Total CAE
in the nominal case. In Table III we show the impact that
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Fig. 4: Average Intersection Awareness. The Intersection Awareness describes the number of objects in the extended perception
of the ego, as a function of their distance from the intersection; the average is with respect to all vehicles in the simulation.

TABLE III: Total Collision Alert Events with different CPS penetration rates

Attack Type Total Collision Alert Events (Penetration Rate 0.8) || Total Collision Alert Events (Penetration Rate 0.2)
Without MBD With MBD Without MBD With MBD
AddObj 1019 (+46.83%) 818 (+17.86%) 165 (+0.61%) 165 (+0.61%)
DropAllObj 685 (-1.29%) 684 (-1.44%) 165 (+0.61%) 165 (+0.61%)
DropObj 707 (+1.87%) 705 (+1.585%) 165 (+0.61%) 166 (+1.22%)
SingleConstDisOffset 694 (+0%) 694 (+0%) 164 (+0%) 164 (+0%)
SingleConstDis 718 (+3.46%) 696 (+0.288%) 165 (+0.61%) 165 (+0.61%)
SingleConstSpeedOffset 715 (+3.03%) 699 (+0.72%) 165 (+0.61%) 166 (+1.22%)
SingleConstSpeed 729 (+5.04%) 696 (+0.288%) 165 (+0.61%) 165 (+0.61%)
SingleRandomDisOffset 862 (+24.21%) 711 (+2.45%) 166 (+1.22%) 165 (+0.61%)
SingleRandomDis 698 (+0.58%) 696 (+0.288%) 165 (+0.61%) 165 (+0.61%)
SingleRandomSpeedOffset || 700 (+0.865%) 695 (+0.144%) 164 (+0%) 165 (+0.61%)
SingleRandomSpeed 729 (+5.04%) 696 (+0.288%) 165 (+0.61%) 165 (+0.61%)

TABLE IV: Total Collision Alert Events with different attacker rates

Attack Type Total Collision Alert Events (Attacker Rate 0.25) || Total Collision Alert Events (Attacker Rate 0.15) || Total Collision Alert Events (Attacker Rate 0.05)
Without MBD With MBD Without MBD With MBD Without MBD With MBD
AddObj 1019 (+46.83%) 818 (+17.86%) 912 (+31.41%) 796 (+14.70%) 743 (+7.06%) 717 (+3.31%)
DropAllObj 685 (-1.30%) 684 (-1.44%) 701 (+1.01%) 701 (+1.01%) 696 (+0.288%) 696 (+0.288%)
DropObyj 707 (+1.87%) 705 (+1.59%) 700 (+0.86%) 697 (+0.43%) 695 (+0.144%) 695 (+0.144%)

each attack type has on the CAE. When the penetration rate
is low (0.2), the attacks have a negligible impact, since almost
all the CAE events are triggered on information based on
the vehicle’s local perception. When the penetration rate is
high (0.8) it is clearly visible that the attacks AddObj and
SingleRandomDistOffset have the biggest impact, increasing
the Total CAE by 46.83% and 24.21%, respectively compared
to the genuine scenario. This is due to the fact that these
attacks trigger the addition of non existent objects to the
extended perception; this observations are coherent with what
observed with respect to the variation of the AIA metric.

We can see that when the misbehaviour detection and
mitigation is in place the impact of these attacks is highly
mitigated: for the SingleRandomDistOffset attack the Total

CAE is brougth back nearly at the same level as the genuine
case (only 2.5% increase); also for the AddObj we observe
that the excess number of alerts is greatly reduced, although
not quite back to the nominal case (18% excess with respect
to the nominal case still remaining).

In Table IV we focus on the impact of varying the attacker
rate, for a selected subset of attacks and for penetration
rate 0.8. As expected, for the AddObj attack, the attacker
rate is proportional to the number of Total CAE events.
The misbehaviour detection and mitigation measures help in
reducing the excess alerts. For the DropAllObj and DropObj
attacks, we remark the possibly counter-intuitive result that the
presence of the attack does not seem to impact the Total CAE.
This is explained by the fact that in a high penetration scenario,



thanks to the redundancy of the available information, most
of the time the ego still manages to achieve awareness of the
surrounding objects, even in presence of an attacker in the
neighborhood.

C. Average Waiting Time

We considered the Average Waiting Time for the Paris
Saclay Network, for penetration rate 0.8. The Average Waiting
Time for the genuine case is of 15.796 seconds. We then con-
sider the case of AddObj attack without misbehavior detection,
with a rate of 0.25, and find an increase in the Average Waiting
Time of 13.51%, i.e., 17.93 seconds. In the case of AddObj
with misbehavior detection, we find an improvement in the
Average Waiting Time of 6.7%, i.e., 16.87 seconds.

D. Limitations in the current contribution

We tested our framework on only one generated traffic set;
future work includes repeating the study on different traffic
sets, involving more vehicles.

Other than on the total number of vehicles, the total number
of generated collision alerts highly depends on the parameters
chosen for the attack. Depending on these, more missed alerts
or false alerts may be generated as a consequence of the same
attack event. In future work we plan to study the sensitivity
of our results with respect to those parameters.

We also conducted simulations with different simulation
seeds. With different seeds, there were some missed collision
alerts for certain types of attacks, which we did not include in
this paper. However, with misbehavior detection, the collision
alert can be refined, approaching the genuine condition.

VI. CONCLUSION

In this paper, we present an enhanced intersection applica-
tion framework. We show that the integration of misbehavior
detection into CPS significantly enhances the reliability and
safety of intersection applications by effectively mitigating
the adverse effects of V2X data manipulation attacks. Our
proposed approach demonstrates significant potential in in-
creasing the robustness of safety applications in intersection
scenarios. For future work, we plan to update framework by
integrating advanced misbehavior detection solutions based on
trust mechanisms. Additionally, we plan to test our framework
in multiple traffic scenarios.
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